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Abstract—Proprioception is important in human motor control
but can be impaired by neurological disease. Unfortunately, our
understanding of proprioceptive deficit is very limited, especially
for important joints such as the wrist. To address this gap,
we have constructed a robotic testbed designed to measure
different aspects of proprioceptive acuity at the human wrist
during pronation/supination. Utilizing the testbed, we conducted
a battery of psychometric tests with N = 11 neurologically-
intact individuals to validate the robot’s ability to quantify
position, velocity, and torque sensing capabilities, both actively
and passively. Overall, our findings demonstrate that the testbed
can capture different acuity metrics in healthy participants, and
that passive and active velocity senses are different in healthy
individuals. In the future, we plan to expand the device to test
other wrist degrees of freedom, and we plan to implement the
testbed for individuals living with stroke to help better inform
personalized treatment for faster recovery.

Index Terms—rehabilitation, neuroscience, robotics, proprio-
ception, wrist, kinematics, psychophysics

I. INTRODUCTION

Impairment of sensation in the upper limbs has a profound
effect on a person’s ability to interact with their environment
and their quality of life [1]. Roughly 85% of acute stroke
survivors have some form of sensory deficit overall [2] and
40% in the upper limbs [3]. Impairment of proprioception,
which involves the sense of position, velocity, and force [4, 5],
has been shown to predict poor motor and sensory recovery
[6, 7]. However, proprioception receives very little attention
clinically, and typical bedside evaluations are often limited to
tests that involve passively moving a patient’s finger or toe up
and down, and asking the patient for a binary verbal up/down
report [8–12]. However, since proprioception is not strictly a
passive position sense, these bedside evaluations only provide
one piece of a larger picture of holistic proprioceptive deficit.

The various proprioceptive senses coexist and can integrate
in complex ways to support cognitive and motor functions
[13]. Severity of brain disability can impair senses differently
and impact networks of intermodal influence [7]. These pat-
terns of relationships among senses can be represented as
multimodal profiles of sensory signatures or “fingerprints.”
This modeling philosophy has previously been applied in
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Fig. 1. Wrist Rehabilitation and Impairment of Sensation Testbed (WRIST),
which features a DC motor with encoder, torque sensors, and a grip force
sensor.

stroke [14] and developmental disability [15] research. For
stroke, in particular, different clusters of impairment profiles
in touch and position sense were identified, suggesting shared
neural correlates in the parietal operculum that influence object
recognition [14]. However, proprioception beyond position and
shape sense was not investigated. Without a comprehensive
assessment of sensory ability across all proprioceptive senses
and stages of deficit, it can be difficult to precisely deter-
mine progress made by the patient and intervention dosage
needed to address the whole profile of disease. There is a
pressing need then to offer more reliable and precise sensory
assessments to identify complex proprioceptive deficits in
neurological disease.

It has been argued that robotics, coupled with rich sensing,
can inform rehabilitation models that better predict sensory
improvement over time [16–19]. If robotics can be leveraged
to measure acuity quickly and precisely, large sets of normative
and impaired data with multiple dimensions of psychophysical
and kinematic markers can be collected to allow for complex
disease categorization and individualized treatment at the
bedside. While different joints of the human arm have different
contributions to active sensory acuity [20], our initial focus is
the wrist due to its unique importance in movement correction20
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[20] and its higher severity and variability of deficits compared
to other joints [21, 22]. There have been efforts to leverage
robotics to quantify psychophysical metrics in the wrist [23,
24]. However, current normative datasets of psychophysical
measures at the wrist are just emerging for position-sense
[25–28] and torque-sense [29, 30], especially for active stim-
ulus matching. For persons affected by neurological disease,
available wrist psychometric data is especially sparse, under-
powered, only available for position-sense [31, 32], and does
not distinguish between passive and active senses. Therefore,
our engineering goal is to develop a robotic assessment device
and associated protocol that is capable of capturing signals via
multimodal sensing in a compact package that can scale up
datasets of acuity quickly.

In what follows, we provide a detailed overview of our
robotic wrist sensory assessment device and associated as-
sessment tests that investigate both active and passive pro-
prioceptive acuity using both discrimination and matching
paradigms. We then describe the results from a preliminary
battery of assessments on neurologically-intact participants to:
1) evaluate the device’s capabilities in assessing proprioceptive
acuity; and 2) utilize the device to verify that passive and active
proprioceptive senses are distinct.

II. METHODS

A. Wrist Sensory Assessment Device

To conduct assessments of wrist proprioception, we devel-
oped the Wrist Rehabilitation and Impairment of Sensation
Testbed (WRIST). A component breakdown of the testbed
actuator is shown in Figure 1. To render torques for the
wrist, a Maxon RE50 (50 W) motor is mounted to a rigid
board and energized by a ESCON 70/10 amplifier and a 24 V
DC power supply. A 1024 CPR E6 encoder (US Digital) is
affixed to the motor shaft to measure rotational position. An
alignment coupler connects the motor to a Futek TRS600 (5 N-
m) torque sensor. A custom PVC rotation limiter is attached
to the alignment coupler to limit the range of the device
to ±60 degrees. A zeroing key can be inserted underneath
the rotation limiter to stabilize and zero the rotation of the
device during initialization. A second alignment coupler and
316 stainless steel rod connects the torque sensor to a grip
interface. The rod is supported with a mounted ball bearing.
The grip interface is attached to the end of the transmission rod
with a flange-mount shaft collar. The rod is keyed so the set
screw on the collar can align the interface assembly properly
without risk of rotational shifting.

The grip interface consists of a tubular grip and a Y-handle.
The tubular grip consists of two pieces of 3D-printed ceramic-
plastic composite: a housing piece and a pressure piece. A
Transducer Techniques LSP-10 (10 kg rated) beam load cell
is fastened inside the cavity of the housing piece, and the
pressure piece is attached separately to the load cell with
no other mechanical connections. In this configuration, any
squeezing or clenching of the hand can be captured as a
force signal by the load cell. Positioning and fastening of the
cylindrical force plate onto the load cell relative to the user’s

Occluding
Table with
Gauge Indicator

Grip Interface Forearm Rest

Headphones
(Visual Display)

Fig. 2. Front view of WRIST testbed and typical human-robot interfacing
during an assessment task. The user’s forearm was supported to mitigate
unnecessary fatigue. Note the table, foam, and monitor blocked user sightlines
to the rotating equipment to control the influence of vision, and the head-
phones blocked out distracting noise. Parentheses indicate that the monitor
was disabled for psychometric tasks that are the focus of this paper.

hand was informed by prior literature on grasping distribution
[33]. One end of the hand grip assembly is attached to the Y-
handle via an ATI Mini40 6-axis force-torque sensor (SI-40-2
calibration), which is used to capture non-instructed off-axis
forces and torque from the wrist. The Y-handle can be attached
directly to the shaft collar for pronation/supination motion.
The Y-handle can be reconfigured for adduction/abduction and
flexion/extension motion; however for this validation study,
only pronation/supination motion was considered.

The entire device is controlled through a National Instru-
ments (NI) PCIe-6353 DAQ on a Dell Precision T4810 Work-
station. A MATLAB 2020b/Simulink 10.2 model (MathWorks;
Natick, MA, USA) with Quanser’s QUARC 2020 SP2 Real-
Time Control blockset (Quanser Software; Markham, ON,
CA) is used to process signals to and from the DAQ card.
Position signals from the motor encoder are differentiated
by adjacent samples and filtered with 2nd-order Butterworth
filters to derive stable velocity and acceleration signals.

For this experiment, additional equipment complemented
the testbed to control user vision and hearing, shown in
Figure 2. This practice is standard in perceptual studies [26,
32] to increase task focus and to obtain stable measures
unaffected by confounding sensory inputs. Noise-cancelling
headphones were used to attenuate any distracting noise from
the device mechanics or from the testing room. Virtual task
environments were displayed to a high-definition monitor
above the wrist device for non-psychometric tasks; however,
these tasks are part of a larger protocol that is outside the scope
of this paper. Due to frequent switching between tasks with
and without visual feedback in the overall protocol, blindfolds
were not implemented. Instead, a height-adjustable desk and
the monitor occluded the testbed from user sight, making
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it more difficult to see rotation and confound kinesthetic
sensation with visual integration.

B. Participants

We recruited N = 11 participants (6 F) for our robotic
assessment study. All participants were college-affiliated adults
(age: 29.5 ± 12.4). All participants were provided written
informed consent according to a protocol approved by the
Johns Hopkins School of Medicine Institutional Review Board
(Study# IRB00209185). Participants were compensated at a
rate of $10/hour.

C. Study Design

Upon confirmation of written informed consent, each partic-
ipant completed a questionnaire regarding demographics and
handedness (using the Edinburgh Handedness Inventory [34]).
Clinical assessments were then conducted on the participant’s
preferred side (for wrist pronation) to serve as a baseline. This
included the Nottingham Sensory Assessment with Erasmus
MC modifications (emNSA) [35], which provides an estab-
lished clinical reference for sensory ability. Since propriocep-
tive acuity was targeted in this study, only the proprioceptive
score protocol from emNSA was used. Additional assessments
utilized in the larger protocol included the hand-wrist section
of the Fugl-Meyer Assessment (FMA-HW) [36] for functional
ability and the Montreal Cognitive Assessment (MoCA) [37]
for different cognitive aspects; however, they are not discussed
in this paper.

The participant was then seated in front of the WRIST
device and instructed to grip the interface, as shown in
Figure 2. The participant was instructed to pronate as far as
they comfortably could, or until they hit the rotation limiter,
and then supinate as far as they comfortably could, or until
they hit the limiter. The difference between these two angular
limits defined the participant’s comfortable range of motion
(cROM). This limited variant of range of motion was used
instead of larger anatomical or trainable versions to ensure
participant safety.

An automated version of a passive gauge matching
paradigm [23], in turn an adaptation of the Wrist Position
Sense Test [38], was utilized to measure position sense in
contralateral pointing. In this test, the WRIST device rotated
the participant’s hand to a randomized sequence of angles
within the cROM, and the participant had to indicate the
angle their hand rotated to by pivoting a gauge pointer on
a large protractor with degree resolution with their other hand
(see Figure 2). The difference between hand position and
participant-reported position was recorded for 20 unique angle
presentations across the cROM. No visual feedback from the
monitor was provided during this test.

The robotic assessment tasks (stimuli discrimination and
stimuli matching) were represented as five blocks that were
counterbalanced across participants. Both discrimination and
matching tasks (referred generally as psychometric tests) were
utilized for ipsilateral position and velocity senses, while only
discrimination tasks were used for ipsilateral torque sensing.

A)

B)

Fig. 3. Presentation progression (left-to-right) of A) a rotational discrimina-
tion task for a 2-interval forced choice of different wrist precepts and B) a rota-
tional matching task where users had to match a presented stimulus afterwards
for different wrist precepts. Light gray circles represent the wrist interface,
interior ticks represent the interface position, and exterior ticks represent a
presented stimulus. Curved arrows near the interface center indicate proactive
motor command torques, curved arrows around the perimeter indicate angular
velocities, and tangent straight arrows indicate the force balance between
stimulus torque and reactive torque from the user.

For visual reference, discrimination tasks are illustrated in
Figure 3A, and matching tasks are illustrated in Figure 3B.
Note that in addition to these tasks, our larger protocol
included other assessments such as virtual ADL tasks which
will not be discussed in this manuscript.

1) Discrimination Tasks: For all discrimination tasks, the
device started from an initial neutral wrist angle designated
as home position. The participant was instructed not to input
torque unless verbally prompted to do otherwise. The device
was driven to the home position between stimulus presen-
tations. Using a 3-down-1-up (3D1U) transformed weighted
adaptive staircase, the comparison stimulus was computed
based on the reference stimulus. The presentation order be-
tween the two stimuli was randomized. The response of the
participant was used to update the staircase algorithm to
inform the comparison stimulus of the next trial. The test
ended when the maximum trial count of 50 was hit or the just-
noticeable difference (JND) reversal condition of 8 reversals
was satisfied.

a) Position discrimination (passive-passive): The refer-
ence position was set as 30% of the user’s cROM in pronation.
From home position, the device pronated the wrist to the
first position, held by stiff virtual walls. The position was
presented for 2 seconds, then the wrist was supinated back
to home position. After 1.75 seconds, the wrist was pronated
to the second position, held for 2 seconds, and was supinated
to home. The participant reported to the investigator which
position (first or second) was larger.
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Fig. 4. The protocol progression for a typical session of psychometric assessment on the WRIST testbed.

b) Velocity discrimination (passive-passive): The refer-
ence velocity was set at 60 degrees per second. The device
pronated the wrist at the first velocity, guided by a gap between
a moving set of virtual walls. After the interface reached the
target position of 30% cROM, it was held for 2 seconds then
supinated the wrist back to home position. After 1.75 seconds,
the device pronated the wrist at the second velocity to the
target position, held, and supinated home. The participant
reported to the investigator which velocity (first or second)
was larger.

c) Torque discrimination (reactive-reactive): The refer-
ence torque was set at 500 mNm to protect the participant
and device. Following an auditory prompt, the motor began
a torque ramp-up to a pre-defined target level that was main-
tained for 2 seconds before the torque ramped down to zero.
During this time, the participant attempted to counter-act the
torque and maintain home position. After 1.75 seconds, the
second torque was presented to the user in the same paradigm.
The participant reported to the investigator which torque (first
or second) was larger. If the user failed to maintain position
within the tolerance region (±10°) during the trial, that trial’s
data was ignored, and the adaptive staircase was not adjusted.

2) Matching Tasks: For all matching tasks using method
of adjustment, the device started from an initial neutral wrist
angle home position angle. The participant was instructed not
to input torque unless prompted otherwise. For each trial,
a reference stimulus was selected randomly in the range of
acceptable stimuli, presented and rendered with virtual walls
that guided the participant. After the stimulus presentation, the
virtual walls were disabled allowing the participant to freely
reproduce the stimulus and return to home position. After
participants attempted to replicate the stimulus, the virtual

walls were enabled to steady the participant’s hand for the next
stimulus. The section ended when the maximum trial count of
21 stimulus presentations was hit. Due to hardware limitations,
torque matching was not included in this investigation.

a) Position matching (passive-proactive): The device
pronated the wrist to the first position, held by stiff virtual
walls. The position was presented for 2 seconds, then the wrist
was supinated back to home position. After 1.75 seconds, the
robot stopped rendering walls, and the participant attempted to
match the reference position and return to the home position.

b) Velocity matching (passive-proactive): The device
pronated the wrist at the first velocity, guided by a gap between
a moving set of virtual walls. After the device reached the
target position of 30% cROM pronation, then the wrist was
supinated back to home position. The robot stopped rendering
walls, and the participant attempted to match the reference
velocity consistently to the end position and back.

The overall structure of the protocol incorporating these
tasks is illustrated in Figure 4. To account for potential
ordering effects, the presentation of each robotic task was
counterbalanced across all participants. The larger protocol
also included virtual ADL tasks; however, these tasks were
designed to test functional ability, and are therefore not the
focus of this paper.

D. User-reported Surveys

After each robotic assessment task, participants responded
to six questions from the NASA-TLX (Task Load Index)
questionnaire [39] regarding perceived effort and comfort.
Specifically, they were asked about mental demand, physical
demand, temporal demand, performance, effort, and frustra-
tion.
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E. Metrics and Statistical Analysis
Each task on the Edinburgh Handedness Inventory was

scored based on how exclusively the participant’s left or
right hand was used to perform activities of daily living, as
reported by the participant. The resulting handedness scores
were normalized into a (right) laterality index scaled from -100
to 100. The proprioception subscore of emNSA was scored
on a scale of 0 to 8 for each participant. Each NASA-TLX
question was answered on a scale from 0 to 100.

Discrimination task results are reported in JND as an
absolute value. JNDp, JNDv, and JNDt correspond to position,
velocity, and torque discrimination, respectively. For each
discrimination task, the JND was taken as the median of the
comparison stimuli for the last four reversals of the adaptive
staircase.

Matching task results are reported as errors between refer-
ence stimuli and user matching input as an average across
trials. MEp and MEv correspond to position and velocity
adjustment error respectively. For position tasks, errors are
reported in degrees, determined by the difference in steady-
state reference angle and steady-state participant-matched an-
gle. For velocity tasks, errors are reported as an average
across trials in degrees/second, determined by the difference
in average rate of angle change between rising ramps of the
reference rotation and the user-produced rotation. The ramp
interval of interest was shortened to a subset midrange, as done
in previous literature [40], to cut off smoothstep transitions or
user overshoot that might impact feature extraction. Mean-
while, the automated WPST (gauge matching task) reported
errors between the angle presented by the robot to the passive
wrist of interest and the user-reported angle indicated on the
gauge by the other (active) hand. This gauge matching error
is represented as MEg.

All statistical analysis was performed using the Statistics
and Machine Learning Toolbox in MATLAB 2021a (Math-
Works; Natick, MA).

To check for potential differences between measures of
similar psychometric tests for a given proprioceptive sense,
a series of variance analysis tests was used. To compare
error from the contralateral automated WPST, error from the
ipsilateral robotic position matching, and JND acuity from
ipsilateral position discrimination, a non-parametric Friedman
test with Bonferroni correction was used, but a repeated-
measures ANOVA can be used if normality exists in compared
samples of measures. For the JND measure from velocity
discrimination and the matching error from velocity matching,
a non-parametric Wilcoxon signed rank test was used, but a
t-test for matched pairs can be used if normality is confirmed.

III. RESULTS

A. Psychometric Acuity
All measure samples were not normally distributed; there-

fore, non-parametric tests were conducted. All participants had
perfect emNSA and FMA-HW scores (8 and 30, respectively),
while MoCA scores were not (28.00 ± 1.67). In addition, par-
ticipants reported varying degrees of Edinburgh Handedness

TABLE I
PSYCHOMETRIC TEST MEASURES FROM THE ROBOTIC DISCRIMINATION

AND MATCHING ASSESSMENTS.

PID MEg
(deg)

JNDp
(deg)

JNDv
(deg/s)

JNDt
(mNm)

MEp
(deg)

MEv
(deg/s)

1 11.13 4.74 9.94 59.65 4.69 21.01
2 5.33 1.52 6.46 137.10 4.69 18.52
3 6.07 4.41 5.95 46.25 7.03 13.28
4 6.35 1.51 7.45 82.85 5.22 16.44
5 7.30 5.80 14.26 144.45 7.81 22.59
6 10.53 2.17 10.56 138.00 5.14 17.77
7 10.77 8.34 9.65 112.75 6.46 13.85
8 13.75 2.23 7.16 91.10 3.69 9.49
9 12.87 1.51 12.35 59.65 6.75 13.54
10 5.46 4.12 4.96 149.60 3.34 9.47
11 8.66 5.17 2.77 77.95 3.36 18.06

Mean 8.93 3.77 8.32 99.94 5.29 15.82
STD 3.04 2.21 3.38 37.98 1.54 4.30
Median 8.66 4.12 7.45 91.10 5.14 16.44

(60.25 ± 53.86). Table I shows acuity scores for all robotic
proprioception tests across participants.

B. Active and Passive Comparison

From a within-subjects analysis of variance, differences
in expected scores of velocity discrimination and matching
were statistically significant (p = 0.000976). Gauge matching,
where position was passively sensed and actively pointed con-
tralaterally, and ipsilateral position discrimination also differed
significantly in expected score (p = 0.019). However, other
comparisons of position sense, especially between ipsilateral
discrimination (passive) and matching (active), were not sta-
tistically different (p > 0.05).

C. NASA-TLX Responses

Box-and-whisker charts of NASA-TLX response distribu-
tions from the post-task surveys are shown in Figure 5 (next
page).

IV. DISCUSSION

The primary goal of this study was to validate the WRIST
testbed’s ability to investigate proprioceptive acuity at the
human wrist. This goal was achieved by successfully collect-
ing acuity measures of various senses from multiple healthy
participants. Our average values of positional JND, torque
JND, and positional ME generally agree with prior literature
[26, 30, 32]. The average positional JND from our study is
3.77°, higher than the pronation JND of 1.90° determined in a
previous study [26]. The median torque JND of the participant
pool is 91.10 mNm, whereas a prior torque discrimination
study [30] determined a smaller median JND of 57.97 mNm
in pronation. While these values are within the same order
of magnitude, we estimate that differences in psychophysical
methods, participants pools, and hardware may attribute to the
observed discrepancies.

Based on the robotic psychometric tasks, we confirm that
discriminating and matching velocities differ in acuity, sug-
gesting that passive and active velocity senses are distinct.
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Meanwhile, only passive gauge matching and passive discrim-
ination significantly differed in measure for position sensing,
which might suggest a difference between internal and external
senses of wrist position. The active/passive separation of
position senses remains inconclusive, but will also be the focus
of future studies.

Future device improvements will include a better cylindrical
grip interface for eventual use in investigating stroke-affected
populations, as well as a better velocity estimator to improve
the robustness of simulating very stiff virtual walls for the
torque discrimination tasks. Furthermore, the high physical
demand reported by participants after torque discrimination
may be due to difficulty in maintaining a consistent motor
command from repeating a sustained isometric task. Fatigue
can impact a user’s ability to produce force [41], and intensity
of voluntary isometric control can impact perceived physical
effort [42]. Our finding regarding physical demand in torque
discrimination suggests that a lighter reference torque or a
quicker ramp-and-return stimulus is needed in the future. Our
study used constant references for torque stimuli, in line with
prior literature [30]. However, implementing an assessment
that accounts for individual physical ability could help nor-
malize discrimination performance and explain differences
in acuity better. We also envision extending the presented
protocol to abduction and flexion to investigate additional
normative values of proprioceptive acuity. More kinematic

measures like rotational smoothness and arm impedance from
grip effort can be computed and compared to reveal potential
correlations and differences.

Deploying psychometric tests on 11 neurologically-intact
participants with this new device demonstrates the feasibility
of the hardware and the protocol, which we want to refine
further. We will continue to test participants affected by stroke
or other neurological conditions to investigate the impact of
disease on proprioceptive senses better by having more robust
datasets with age-matched controls. As datasets get exception-
ally large for researchers, machine learning techniques may
be helpful in conducting regression and correlation analyses
to make more robust proprioceptive fingerprint profiles. By
building up reference datasets for all directions and distinct as-
pects of sensory perception for more neurological conditions,
we can identify each person’s unique “sensory fingerprint” that
can inform specific and quick treatment for faster neurological
recovery.
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