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Abstract

Background: Several automated skill‐assessment approaches have been proposed

for robotic surgery, but their utility is not well understood. This article investigates

the effects of one machine‐learning‐based skill‐assessment approach on psycho-

motor skill development in robotic surgery training.

Methods: N = 29 trainees (medical students and residents) with no robotic surgery

experience performed five trials of inanimate peg transfer with an Intuitive Surgical

da Vinci Standard robot. Half of the participants received no post‐trial feedback.
The other half received automatically calculated scores from five Global Evaluative

Assessment of Robotic Skill domains post‐trial.
Results: There were no significant differences between the groups regarding overall

improvement or skill improvement rate. However, participants who received post‐
trial feedback rated their overall performance improvement significantly lower

than participants who did not receive feedback.

Conclusions: These findings indicate that automated skill evaluation systems might

improve trainee self‐awareness but not accelerate early stage psychomotor skill

development in robotic surgery training.
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1 | INTRODUCTION

Robot‐assisted minimally invasive surgery (RMIS) is becoming the

standard of care in many surgical specialities.1–3 Surgical platforms

like Intuitive's da Vinci robot have been around for almost 2 de-

cades and have played a major role in shaping the RMIS landscape

and popularising its use in both routine and non‐routine proced-

ures. As a result, robot‐assisted surgery as a clinical practice and

medical industry has grown at an exponential rate, resulting in

numerous general purpose and specialised robots at various stages

of the development and deployment pipeline. While the introduc-

tion of each robotic platform brings new features and innovations

intended to improve surgical practice, these differentiating

features present a challenge with respect to surgical training and

credentialling.

Given the increasing constraints on resident work hours and

emphasis on patient safety,4–7 a significant portion of early psycho-

motor skill development in minimally invasive surgery occurs through

simulation‐based training.8 For RMIS, simulation‐based training is

provided through online and hands‐on modules developed directly by
robot manufacturers, training equipment manufacturers, or hospital

training centres, and they utilise a combination of virtual re-

ality (VR),5,9–12 inanimate,9,13–15 and in‐vivo and ex‐vivo training

tasks.9,16–18 Unlike laparoscopic19 and endoscopic surgery,20 there

presently exists no standardised and widely accepted training cur-

riculum for any RMIS platform or RMIS procedure.
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Many VR platforms such as the da Vinci Surgical Skills Simulator

have been validated for assessment of surgical skill21 and have even

shown potential to transfer basic robotic skills from simulation to the

OR.22 However, there is also evidence to suggest that the skills

developed in VR are not as robust as those developed in the real‐
world.23 Thus, for RMIS, training on the real clinical robot through

inanimate, ex‐vivo, or in‐vivo tasks is still considered the gold stan-

dard.9,10 Unfortunately, skill assessment for any task performed on

the clinical robot requires a human rater to observe the performance,

often through video review, and provide written or oral feedback.

Though helpful for learning, structured human grading can be sub-

jective, time consuming, and cost ineffective (as most raters are

practicing physicians). Additionally, assessments are limited to fea-

tures of skill that can be visually observed. Yet, it has been demon-

strated for RMIS and other MIS approaches that the manner in which

the surgeon physically interacts with the surgical environment is an

indicator of skill.14,24–32

ForRMISprocedures inparticular, the ability tomeasure skill using

robotic instrument motion, force, and vibration has led to the devel-

opment of a number of approaches that utilise pattern‐recognition
algorithms to automatically assess surgical skill.14,27,32–34 Often,

these automated approaches utilise existing structured assessment

metrics such as the Global Evaluative Assessment of Robotic Skill

(GEARS)35 or theObjective StructuredAssessment of Technical Skill36

and are developed using ground‐truth skill ratings produced by trained
surgical skill raters or crowd‐sourcedmethods.37–41Additionally, some
approaches have generated novel metrics based on the specific nature

of the data and training task.32 The benefits of these automated ap-

proaches are that they capture aspects of surgical skill performance

that visual observation alonemaymiss, and that they provide feedback

to the trainee very quickly andwithout overtaxinghuman raters. In this

way, these advancements could help bring to clinical robot training one

of the long‐standing benefits ofVR‐based training approaches.Despite
their great potential, however, there is limited evidence on the efficacy

of these automated assessment approaches in improving surgical skill.

In this manuscript, we present the findings from one such inves-

tigation. Utilising an automated assessment approach previously

developed by our research group,14 we assessed the impact of

providing post‐trial scores from the GEARS assessment tool to novice

trainees performing the peg transfer training task on a da Vinci sur-

gical robotic platform. We hypothesised that participants receiving

feedback would improve their skill at peg transfer faster than what would

occur through natural learning. In what follows, we describe the auto-

mated assessment algorithm and the experimental protocol used to

investigate its utility, along with the experimental results and a dis-

cussion of their implications in the broader context of RMIS training.

2 | METHODS

2.1 | Participants

We tested N = 29 participants (19 male, 10 female, mean age

25 � 2 years) from the following two training levels (N = 24) second‐,

third‐, and fourth‐year medical students in the Agnew Surgical Society

at theUniversity of Pennsylvania PerelmanMedical School, and (N=5)

first‐ and second‐year surgical residents in the University of Penn-

sylvania Health System. Novice participants were specifically chosen

for this study because their lack of prior robotic experience allowed for

the greatest improvements in task performance. Of our 29 partici-

pants, 16 had no familiarity with the da Vinci surgical system, while the

other 13 reported having limited familiarity; the remaining unchosen

options were ‘moderate’ and ‘extensive’ familiarity. In addition, no

participant had ever performed or assisted in a robotic case at the

surgeon's console. Participants were compensatedwith a $15 gift card

to offset the cost of travelling to the study location. Even with this

monetary incentive, we found that the main motivation for participa-

tion was to gain experience on a da Vinci robot. All study procedures

were approved by the University of Pennsylvania Institutional Review

Board under protocol #825651. Participants were pseudo‐
randomised into one of two groups to balance gender and training

level. Participants in the control group received no feedback regarding

their performance on the training task. Participants in the feedback

group received feedback from our automated skill‐assessment system
after every repetition of the task, as described below.

2.2 | Experimental setup

The study took place on a da Vinci Standard surgical system

augmented with our Smart Task Board (STB) data collection system.

The STB records the physical interactions from the patient‐side
manipulators of the Intuitive da Vinci surgical system and uses this

data along with time‐based measures to predict skill in robotic peg

transfer according to the GEARS validated assessment tool.35 The

STB consists of three three‐axis broad‐bandwidth accelerometers

that clip on the two primary robotic arms and the robotic camera

arm, a task platform containing a three‐axis force sensor, a custom

signal conditioning and data acquisition circuit, a video recorder for

recording the video feed from the robotic camera, and a pedal and

light strip to control data recording. The STB predicts GEARS scores

using a regression‐based machine‐learning algorithm that receives

features from the accelerometer signals, force‐plate signals, and time
measures. This algorithm was developed using peg transfer data from

participants of various skill level. More detail of the STB system, as

well as the machine‐learning algorithm development and evaluation,

can be found in Brown et al.14

Participants used the da Vinci to perform the peg transfer task. Six

triangular objects are placed on the left side of a pegboard. The

participant picks up each object with their left tool, transfers it midair

to their right tool, and places the object on a peg on the right side of the

board, as shown in Figure 1A. After transferring all six objects, the

participant returns the objects to the pegs on the left side of the board

by reversing the process. Participants were instructed to retrieve

objects that fall on the task board with the tool from which it fell. If an

object fell off the task board, participants were instructed not to try to

retrieve it. Peg transfer was completed with two 8‐mm‐diameter
EndoWrist Maryland Bipolar Forceps tools. This relatively simple

2 of 11 - BROWN AND KUCHENBECKER

 1478596x, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rcs.2492, W

iley O
nline L

ibrary on [08/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



task was adopted from the Fundamentals of Laparoscopic Surgery

(FLS) manual skills test42 and conducted in the da Vinci skills model

shell to ensure consistent positioning of the camera and instruments

(see Figure 1A).

2.3 | Experimental procedure

After giving informed consent, participants completed a demographic

questionnaire. Each participant then sat at the da Vinci surgeon's

console as shown in Figure 1B. The experimenter explained the da

Vinci Standard system, including adjusting the ergonomics, focussing

the camera, and clutching the tools and camera. Next, participants

spent at least 5 min doing a warm‐up task that featured four elevated
podiums and four rubber objects that could be moved from one

podium to another and stacked, as shown in Figure 1C.

After completing the practice session, the participant was shown

how to operate the data/video recording system using the foot pedal

and light strip. Participants then viewed static images depicting the

peg transfer task procedure. Participants were subsequently given a

written explanation of the five GEARS domains (Bimanual Dexterity,

Depth Perception, Efficiency, Force Sensitivity, and Robotic Control)

on which their performance would be evaluated. The GEARS domain

Autonomy was not included in this study because the peg transfer

task is simple enough that participants could complete it without

verbal prompting. Although the descriptions of the GEARS domains

are written in the context of skill evaluation in live surgery with real

tissue, participants were instructed to interpret the language in the

context of the inanimate peg transfer task. Participants were then

shown the GEARS five‐point evaluation survey shown in A and were

instructed to perform the peg transfer task in an attempt to score as

high as possible on each domain.

Before participants began the task, the tools were reloaded to

reset their configuration, and the camera was adjusted to give a

global view of the task board and the tool tips. Participants

completed five trials of the peg transfer task. A short break of at least

2 min was taken in between trials. During this time, the tools and

camera were reset, and the participant was shown the GEARS eval-

uation survey and instructed to think about ways of improving their

score. Participants in the control group received no feedback about

their performance. Participants in the feedback group, however, were

shown performance feedback in the form of integer scores on the

five GEARS domains mentioned above. These scores ranged from 1

(lowest) to 5 (highest) and were predicted by our automatic skill‐
evaluation system. The experimenter did not provide any explana-

tion of the scores received, nor did he assist subjects in improving

their scores. After completing all five trials of the peg transfer task,

the participant completed a post‐test survey that captured their

F I GUR E 1 (A) Peg transfer task: Participants move the blue and pink triangular objects from the left side of the peg board to the right and
then reverse the process. (B) A participant sits at the da Vinci surgeon's console to perform the peg transfer task. (C) Warm‐up task featuring
four black rubber objects that participants manipulated and moved from podium to podium to become familiar with the da Vinci operation.
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subjective assessment of the study. A separate survey was used for

each of the two participant groups.

2.4 | Metrics and data analysis

To analyse any potential differences between our two participant

groups, we have chosen as quantitative metrics the integral of the

magnitude of the contact force vector, the trial duration, the root‐
mean‐square (RMS) of the high‐frequency (>100 Hz) and mid‐
frequency (20–100 Hz) accelerations of the left and right in-

struments, the raw GEARS scores for trials 1–5, and the overall

learning rate for each of the five GEARS domains.

The force integral shows the total force the participant applied to

the peg transfer task during a given trial. Raw GEARS scores were

recorded for each domain and every trial for participants in both

groups. These scores were computed using the regression‐based al-

gorithms discussed in the Experimental Setup section and detailed in

Brown et al.14 The learning rate for each domain was computed as

the slope m of the line fitted to the GEARS scores received over all

five trials using the formula y = m ⋅ xt + b: here y is the GEARS score

for the selected domain, xt is the trial number, and b is the y‐axis
intercept. An example of the linear fit for the Depth Perception

GEARS scores for participant #4 is shown in Figure 2, where the

resulting slope is m = 0.4 points per trial. Videos of the first and fifth

trial for this participant are shown in https://youtu.be/yH0R‐eXl3CQ
and https://youtu.be/RsV6sm_obEw, respectively.

2.4.1 | Post‐test survey

Our post‐test survey represents a quantitative and qualitative

assessment of each participant's opinions regarding the experiment.

Participants in the control group were asked (1) how they felt their

performance changed over the course of the experiment, (2) whether

they would have preferred to receive feedback on their performance,

(3) how feedback would impact their likelihood to practice, and (4) to

rank each GEARS domain with respect to the amount of attention

they gave it during the experiment. Participants in the feedback

group were asked (1) how they felt their performance changed over

the course of the experiment, (2) how useful it was to receive feed-

back on their performance, (3) how accurate they felt this feedback

was, (4) how likely they would be to practice if they received feed-

back, (5) to rank each GEARS domain with respect to the amount of

attention they gave it during the experiment, and (6) how the auto-

matic evaluation system could be improved.

2.4.2 | Statistical analysis

All statistical analyses were performed using R (v.3.3.2). For all data,

checks for normality and homogeneity of variance were performed

using the Shapiro‐Wilk and Levene Tests, respectively. Parametric

t‐tests and non‐parametric Wilcoxon Rank sum tests were then used,

where appropriate, to evaluate the force integral between groups for

each trial, the trial duration between groups for each trial, the left

and right tool accelerations between groups for each trial, the raw

GEARS score differences between groups for each trial and each

GEARS domain, including the overall GEARS score, the overall

learning rate (slope) between groups for each GEARS domain and the

overall GEARS score, and the qualitative response between groups to

the survey question ‘how did you performance change over the

course of the experiment?’.

3 | RESULTS

3.1 | Quantitative

Our quantitative results suggest that for the peg transfer training

task, receiving automated objective assessment in the form of

scores on the GEARS assessment tool does not lead to faster skill

development compared to natural learning. In particular, for our

peg transfer training task, we found no significant difference in the

average force magnitude integral (see Figure 3A) or the average

trial duration (see Figure 3B) between our two groups in trials 1–5

(p > 0.05 for all comparisons). For the left and right tool acceler-

ations, there was one significant difference in the mid‐frequency
right tool acceleration between the two groups for trial 1

(p = 0.0133), with the control group causing higher accelerations

than the feedback group. However, this significant difference is not

a result of our feedback system since it occurred on the first trial.

All other differences were not significant (p > 0.05 for all com-

parisons) (see Figure 3C). We also found no significant difference

for the average GEARS scores between our two groups in trials 1–5

for each of the five GEARS domains and the overall GEARS score

(p > 0.05 for all comparisons) (see Figure 4A). Regarding the
F I GUR E 2 Linear fit of Depth Perception Global Evaluative
Assessment of Robotic Skill (GEARS) scores for participant #4.
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learning rate, we also saw no statistical difference between the two

groups for any domain, as well as the overall learning rate, which is

based on the overall score for each trial (p > 0.05 for all compar-

isons) (see Figure 4B).

3.2 | Qualitative

Participants in the feedback group (Median = 76 on a scale from 0 to

100) rated their overall improvement in performance significantly

lower than participants in the control group (Median = 78) (W = 132,

p < 0.02, r = −0.48), as shown in Figure 5. Additionally, participants in
the control group gave a rating of 86 � 12 (0–100 scale) as to how

useful it would have been to receive feedback ratings. Participants in

the feedback group gave an average rating of 76 � 17 (0–100 scale)

as to how useful it was to receive ratings. Participants in the feedback

group gave an average rating of 63 � 15 (0–100 scale) as to how

accurate they felt the ratings were. About feedback influencing their

desire to practice more, participants in the control group gave an

average rating of 93 � 14 (0–100 scale), and participants in the

feedback group gave an average rating of 86 � 12 (0–100 scale).

Regarding participants' rated attention to each domain, we identified

the most common (mode) rankings for each domain by group, as

shown in Table 1.

4 | DISCUSSION

In this study, we sought to evaluate the utility of an automated skill‐
assessment platform for robotic surgery training. The assessment

platform utilises measures of the physical interaction between the

surgical robot and the surgical training environment in a regression‐
based algorithm to rate surgical skill according to the GEARS

assessment survey. Novice participants were recruited to perform

F I GUR E 3 (A) Average force magnitude integral by participant group in trials 1–5. (B) Average trial duration by participant group in trials

1–5. (C) Average left and right tool acceleration (mid and high frequency) by participant group in trials 1–5. Solid red lines with circular
markers refer to the control group. Dashed blue lines with triangular markers refer to the feedback group. Error bars represent �1 standard
deviation.
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the peg transfer psychomotor training task in two randomly assigned

groups that differed in the availability of post‐trial feedback of task

performance. We found no quantitative difference between groups

regarding their overall skill improvement throughout the training

exercise. Qualitatively, however, we found that receiving post‐trial
feedback from our system affected participant's self‐evaluation and

motivations to practice, which could potentially play a more signifi-

cant role for skill training involving more complicated tasks where

natural learning occurs over a longer time.

Both groups of participants in this study improved their skill at

the peg transfer task by the same amount. There were no significant

differences between the force magnitude integral, trial duration, tool

accelerations, and GEARS scores of the two groups after the first

trial, indicating that the groups were well‐balanced in the random-

isation (see Figure 4). This balancing holds true for the remainder of

the study (trials 2–5). That the group receiving feedback did not

improve at a faster rate suggests that participants were not able to

interpret and utilise the provided scores to make the necessary

F I GUR E 4 (A) Average Global Evaluative Assessment of Robotic Skill (GEARS) scores by participant group in trials 1–5 for each of the five
GEARS domains and the overall GEARS score. Solid red lines with circular markers refer to the control group. Dashed blue lines with triangular
markers refer to the feedback group. (B) Average learning rate by participant group for each of the five GEARS domains and the overall GEARS
score. Error bars represent �1 standard deviation.
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adjustments to improve their performance. It is worth reiterating

here that the rubric that was given to participants for score inter-

pretation used language that was written for performance evaluation

on real tissue, not the inanimate peg transfer task, potentially making

the task of score interpretation more difficult. Without guidance,

participants were left to their own interpretations on how to best

improve, which is not expected to differ significantly from partici-

pants in the control group, based on the group randomisation. This

result, therefore, highlights the need not only for feedback, but also

proper coaching, a common theme in the surgical training

literature.43,44

It is possible that our short five‐trial experiment captures only
immediate skill improvement. On average, participants in both

groups scored a three in all five domains (15 overall) on the first trial.

This mid‐range initial score limited the level of possible improvement
to just two points (maximum score was five) for each domain. When

we were developing the algorithm that produces the ratings, a score

of five on any domain was, with few exceptions, obtainable only

by expert robotic surgeons (>300 cases).14 We would therefore

reasonably expect that our non‐expert participants in this short five‐
trial study to score no higher than a four on any domain, limiting the

level of possible improvement even further to just a single point for

each domain. How the scores between groups would change if the

experiment were extended by another five or 10 trials is still un-

known. Worth mentioning here is the fact that we also measure skill

at a discrete integer level. Ratings on a continuous scale might show

more between‐subject and between‐group variation.

Our findings also suggest that participants experienced the task

differently in each group. The overall lower self‐assessment by par-

ticipants in the feedback group suggests these participants were

influenced by the skill ratings they received as post‐trial feedback.
This effect of feedback is further supported by the fact that this

difference in self‐evaluation contradicts the lack of actual quantita-

tive performance differences between the two groups. Taken another

way, it appears that participants in the feedback group had a more

realistic view of their performance, while participants in the control

group had a more inflated view of their performance. Even with the

lack of quantitative difference, it appears that receiving post‐trial
feedback allows for more accurate self‐reflection on where one

stands concerning skill proficiency.

Our qualitative findings also highlight that both groups thought it

useful to receive ratings after every trial, and felt it would motivate

them to practice more often. Of the findings presented in this

manuscript, this one has potentially the most impact. Participants did

not reject our system or view it as not being useful. Nor did the

system make participants in the feedback group perform worse than

F I GUR E 5 Survey response by participant group for the question ‘How did your task performance change over the course of the study?’.
The response scale ranged from 0 ‘It got much worse’ to 100 ‘It got much better’.

TAB L E 1 Participant rankings (scale of 1–5) of Global

Evaluative Assessment of Robotic Skill (GEARS) domains with
regard to attention paid to the domain during the experiment

GEARS domain Control Feedback

Depth perception 5 3

Bimanual dexterity 1 5

Efficiency 1 4

Force sensitivity 2 3

Robotic control 2 4

Note: Here 1 means ‘Most Attention’, and 5 means ‘Least Attention’. Scores
represent the mode (most common) ranking for participants in each

group.
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participants in the control group. The benefit of a system like this is

that it alleviates the burden on a human rater to provide an evalu-

ation of basic psychomotor skill development. It also provides ratings

more efficiently; when developing our algorithm, we noticed that it

took our human raters a minimum of 10 min to rate the same

10 trials that our automatic algorithm could rate in roughly 2 min.

Another major benefit of an automated system is that it pro-

vides immediate feedback, as opposed to the long delay often asso-

ciated with a human rater finding time to view a recorded video of

the trial. Our algorithmic approach is also not affected by fatigue,

conflicting responsibilities, or systematic bias as a human rater can

often be.

When looking at the participants' assessment of the attention

they paid to each of the GEARS domains, it becomes apparent that

participants in the control group paid the most attention to the do-

mains that were easiest to monitor visually or intuit. Participants

could see both tools and could, therefore, monitor whether they were

using both hands in equal proportions. The same may be true for

Force Sensitivity and Robotic Control, where participants could

visually estimate how well they were handling the task materials, and

how smooth the overall operation of the robot was. Participants in

this group probably paid the least amount of attention to Depth

Perception because they lacked an objective way to measure it other

than their knowledge that they were, in fact, perceiving depth. It is

also worth noting here that the Efficiency GEARS domain aligns well

with the metrics used in other surgical‐skill‐assessment evaluations,
such as the FLS.

For participants in the feedback group, on the other hand, no

one domain stood out. This lack of a universal preference suggests

that participants were guided by the automatic GEARS ratings they

were receiving, rather than only what they could visually discern

during the task. Indeed, the post‐trial feedback indicates that some

participants were driven to pay attention to the domains in which

they were doing the best, while others focused on domains where

they were performing worst. With this current data set, neither

participant strategy was dominant. It is also interesting to note that

Efficiency and Bimanual Dexterity, which were ranked first most

often by participants in the control group, were ranked fourth

and fifth respectively most often by participants in the feedback

group.

While our qualitative findings provide insight into the potential

long‐term benefits of an automated skill‐assessment platform like the

one presented here, the lack of quantitative differences between the

two groups is a limitation that needs to be addressed before a system

like this one can have a meaningful impact in surgical training. Of

prime importance is investigating the impact of the system in a sur-

gical training task with a significantly higher degree of difficulty. In

this way, it can be reliably assumed that natural learning alone is

insufficient to reach proficiency. Ideally, participants' initial GEARS

scores would be in the 1–2 range on average instead of 3 as with the

peg transfer task. More difficult tasks would also likely require more

practice time to reach proficiency. Thus, any further investigations

should consider more trial repetitions, including multi‐session trials

to understand the longitudinal effects of a system like this. In addi-

tion, future investigations could assess how the accuracy of skill

feedback (e.g., placebo feedback) affects performance, and if a par-

ticipant's performance would change after viewing other the per-

formance and associated ratings of other participants. Future

investigations could also consider whether trainee performance

changes if they receive feedback on only one GEARS domain (e.g.,

force sensitivity) at a time, instead of all five domains together as in

the current study.

Given that all of our participants were trainees, the times at

which they were available for testing varied greatly. Thus, we had no

control over participants' mental and physical fatigue levels prior to

testing. While all participants appeared engaged in the experiment,

future investigations should consider treating participants' fatigue

and attention levels as covariates during analysis. Possible mea-

surement approaches include reaction time testing or non‐invasive
neuroimaging approaches such as functional near‐infrared spec-

troscopy.45

It may also be worth considering participants' prior exposure to

and experience with other minimally invasive surgical techniques.

Given the different training structures, modules, and rotations that

exist in various residency programs, it cannot be assumed that all

trainees are equivalent in skill proficiency. Thus, to understand the

true benefits of a skill assessment platform like the one presented,

future investigations should consider participants of all skill levels.

Likewise, these investigations should recruit a large enough sample

size to allow for robust sub‐group analysis.

Finally, the use of automated assessment with a more difficult

task may still fail to show any benefits. At present, we have sought

to solve only one aspect of the surgical training process, that of

assessment. Informing trainees of how ‘good’ or ‘bad’ their perfor-

mance was is not the same as providing instructions for improve-

ment. This reality was born out in our current results. Coaching,

therefore, will be critical to any training platform, automated or not.

The research into automated coaching is even more sparse than

automated assessment, leaving open the opportunity for significant

improvement. Exciting possible automated coaching solutions

include providing haptic feedback,46 visually displaying force exer-

tion on tissue,47 and notifying the trainee if they are neglecting one

hand during a bimanual task. Still, the findings in this work should

not be overlooked, as we have demonstrated several potential

benefits of an automated skill‐assessment platform in robotic

surgery.
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