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ABSTRACT

The cerebellum has demonstrated a critical role during adaptation in motor learning. However, the extent to which it can
contribute to the skill acquisition of complex real-world tasks remains unclear. One particularly challenging application in terms
of motor activities is robotic surgery, which requires surgeons to complete complex multidimensional visuomotor tasks through
a remotely operated robot. Given the need for high skill pro�ciency and the lack of haptic feedback, there is a pressing need for
understanding and improving skill development. We investigated the effect of cerebellar transcranial direct current stimulation
applied during the execution of a robotic surgery training task. Study participants received either real or sham stimulation
while performing a needle driving task in a virtual (simulated) and a real-world (actual surgical robot) setting. We found that
cerebellar stimulation signi�cantly improved performance compared to sham stimulation at fast (more demanding) execution
speeds in both virtual and real-world training settings. Furthermore, participants that received cerebellar stimulation more
effectively transferred the skills they acquired during virtual training to the real world. Our �ndings underline the potential of
non-invasive brain stimulation to enhance skill learning and transfer in real-world relevant tasks and, more broadly, its potential
for improving complex motor learning.

Introduction
Throughout the study of human and animal movement behavior, scientist have tried to classify and empirically delineate the
different mechanisms of motor learning. The cerebellum has demonstrated a critical role in error-based learning through the
development of forward internal models (sensory-motor maps) that are updated in accordance with sensory prediction errors.
Such prediction errors provide vectorial information (e.g., magnitude and direction) on how to adjust the subsequent movement
to achieve a successful motor action1. Therefore, error signals facilitate the update and re�nement of the internal representations
of the environment or body dynamics2,3.

Non-invasive brain stimulation (NIBS) is a tool that has been widely used in attempts to augment motor learning4–6. One
form of NIBS called transcranial direct current stimulation (tDCS) consists of applying constant electric current into speci�c
areas of the brain7 allowing for the investigation of physiological, functional, and behavioral reactions8–11. The cerebellum has
been speci�cally targeted during several motor learning studies12–15. Through the application of anodal tDCS to the cerebellar
cortex (CB-atDCS), Purkinje cells are thought to be activated, thereby inhibiting the excitatory connections to the primary
motor cortex (M1). As a consequence, CB-atDCS has the potential to modulate the cerebellum-M1 interconnection and affect
behavioral modi�cations during the execution of error-based motor learning tasks. Even though the speci�c neurophysiological
mechanisms characterizing cerebellum and M1 are still only partially understood, the selective application of NIBS during
tailored motor learning experiments is gradually leading to the disentanglement of their individual roles during the acquisition
of real-world skills1,16,17.

Anodal tDCS stimulation over the ipsilateral cerebellum has been shown to augment online skill acquisition during a
sequential visual isometric pinch force task15, and increase adaptation rates during a screen cursor rotation task14. Furthermore,
CB-atDCS led to increased error-dependent learning and adaptation in a force-�eld reaching task18. Despite their promising
results, these experiments utilized non-ecological, tightly controlled tasks with limited complexity. Therefore, the learned



skills can be dif�cult to link to a meaningful real-world application. Likewise, to the best of our knowledge, no prior work has
investigated the effects of CB-atDCS on skill generalization and context transfer.

In this work, we investigate the effects of CB-atDCS during a complex real-world multidimensional visuomotor task
(teleoperated needle insertion with a surgical robot) while providing concurrent error-based visual feedback for skill accuracy
and acoustic guidance for skill speed. The proposed task is designed to reproduce and quantitatively evaluate the circular
wrist movement usually performed by surgeons during precision suturing with a da Vinci Surgical System. Speci�cally, we
targeted the effects of CB-atDCS in learning motor skills needed for this complex surgical task in real and virtual environment
contexts (post-training Evaluation). In addition, we assessed the transfer of context from training in the virtual to the real
environment and vice versa (post-training Cross-evaluation). We hypothesized that CB-atDCS applied during training would
lead to measurable post-training behavioral changes (both Evaluation and Cross-evaluation) with respect to sham stimulation
(SHAM). The following presentation expands upon our prior work, Caccianiga et al19, which exclusively analyzed the SHAM
stimulation group (18 subjects) in the dataset in order to investigate real and virtual surgical training from a non-augmented
motor learning perspective. Here, we analyze the full dataset (36 subjects) to compare the effects of CB-atDCS to SHAM
stimulation from a complex real-world motor learning perspective.

Methods

Participants
This study was approved by the Johns Hopkins School of Medicine Institutional Review Board (IRB: study #00077792). All
reported methods were carried out following the IRB guidelines and regulations. 36 able-bodied participants were recruited for
the study (17 females and 19 males; mean age 27� 4.1 years). Informed consent was obtained from all subjects prior to the
experiment. 33 participants reported being right-hand dominant, as assessed using the Edinborough Handedness Survey. Three
participants reported being left-hand dominant and performed the experiment on a mirrored setup. Among the participants,
12 had medical backgrounds, however, no participants had prior experience with a surgical robot or any other teleoperation
devices. All participants came in for a single session (approximately 120 minutes) during which they were asked to perform a
surgical training task in either a real or virtual training environment and then switch to the opposite training environment. In a
double-blind fashion, participants received either real or sham cerebellar stimulation during training.

Experimental Task
For the complex motor learning task, we utilized the Enhanced Needle Driving (END) platform, an experimental setup developed
to allow direct comparisons between virtual reality and real-world inanimate surgical training19. Training experiments were
performed using the da Vinci Research Kit (dVRK), an open-source telerobotic system derived from the �rst generation
da Vinci Surgical System20. The END training task involved driving a curved surgical needle (1/2 round, 20 mm radius)
through three rings (2 mm radius) distributed at 45 degree increments inside the vertical plane. The END platform showed
multidimensional visual feedback of the needle trajectory error through a ring of LED lights. The visual feedback displayed the
lateral displacement direction by turning on one of the 24 LEDs of the LED ring (like the hand of a clock). Additionally, the
lateral displacement intensity was mapped to the color of the selected LED (e.g. red or yellow). Furthermore, in case of both
lateral and axial displacement (push/pull), the number of activated LEDs would increase according to the axial displacement
intensity. A real sensorized END platform (Inanimate) and identical simulated END platform (Virtual) were developed to
support investigations into context-speci�c skill acquisition (Figure1). Complete details of the experimental task and telerobotic
platform can be found in19.

Cerebellar Stimulation
Cerebellar stimulation was delivered using a neuroConn DC-Stimulator (Neurocare group AG, 2021) using two 25 cm2 sponge
electrodes soaked in saline solution. A cerebellar montage was used with the anode centered over the cerebellum (3 cm lateral
to the inion, ipsilateral to the user's dominant hand) and the cathode electrode positioned in the central region of the ipsilateral
cheek. The intensity of stimulation was ramped up to 2 mA at the beginning of the training phase. The stimulation intensity
was set based on previous investigations reporting the utility and robustness of a 2 mA current �ow across the cerebellum1521 as
well as other brain regions22. The stimulation protocol delivered 30 minutes of CB-atDCS while the SHAM protocol delivered
stimulation only for the �rst 30 seconds. The control unit was set in double-blind mode so that neither the trainee nor the
investigator was aware of the actual level of current output. Prior to stimulation, participants were checked for any discomfort
related to the electrodes' setup.

Experimental Design
Participants completed a tDCS eligibility survey regarding medical background, demographics, and handedness. They were then
familiarized with the robotic platform (dVRK) and received an overview of the experimental needle driving task. Participants
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Figure 1. Top – the experimental setup. The participant sits at the surgical robot console while receiving NIBS. The robot is
composed of two main components. First, the surgeon's console (dVRK stereo viewer), where the participant remotely controls
the surgical instruments with two hand manipulators and an immersive stereoscopic view of the operation site. Second, the
patient side console (dVRK robotic arms) where the surgical instruments are deployed and the stereo image of the scene is
captured.
Bottom – the Virtual (left) and Inanimate (right) Enhanced Needle Driving (END) platforms as seen from the dVRK stereo
viewer. Proportions, perspective, and background are accurately reproduced between the two training platforms. Two surgical
instruments are teleoperated to drive the curved needle through three rings. Visual feedback of each ring displacement is
provided through a ring of RGB LEDs. Feedback changed in terms of position of the activated LED on the LEDs ring
(displacement direction), color of the activated LED (displacement intensity), and the number of LEDs activated (push/pull
displacement).

were instructed on the functioning principle of the visual feedback provided through the RGB LED lights around each ring.
Users were then randomly assigned to the following four groups: 1) sham stimulation on the Virtual END platform (Virtual-
Sham, 4 females and 5 males, mean age 27� 3.7 years, 1 left-handed, 2 with medical background); 2) real stimulation on the
virtual END platform (Virtual-Stim, 5 females and 4 males, mean age 29� 5.2 years, 1 left-handed, 4 with medical background);
3) sham stimulation on the Inanimate END platform (Inanimate-Sham, 4 females and 5 males, mean age 27� 3.4 years, 0
left-handed, 4 with medical background); 4) real stimulation on the Inanimate END platform (Inanimate-Stim, 3 females and 6
males, mean age 27� 4.7 years, 1 left-handed, 2 with medical background). During the training phase, participants in the
Sham groups received 30 seconds of CB-atDCS stimulation, whereas participants in the Stim groups received 30 minutes of
CB-atDCS stimulation (described below).

The experiment consisted of four distinct phases:Baseline, Training, Evaluation, andCross-evaluation. During theBaseline
phase, participants' initial skill level was evaluated with 15 task trials (a trial is de�ned as a completed single needle insertion).
During theTrainingphase, participants performed trials over the course of 30 minutes, receiving either CB-atDCS or sham
stimulation. During theEvaluationphase, participants performed 15 trials of the task on the same platform they trained on.
During theCross-evaluationphase, participants repeated their post-training evaluation on the opposite platform with respect to
the one used during theBaseline, Training, andEvaluationphases.

During theTraining phase, users were not time-constrained and therefore free to decide their own trade-off between speed
and accuracy. During the testing phases (Baseline, Evaluation, andCross-evaluation), users were instructed to follow three
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Figure 2. Overview of the study design. Participants were divided into four groups (N=9 for each group) based on the training
platform (Inanimate or Virtual) and stimulation (Stimulation or Sham). During theTrainingphase (yellow box), half of the
participants received SHAM stimulation while the other received real CB-atDCS. Participants underwent three testing phases:
Baseline(pre-training, shown in red),Evaluation(post-training, shown in green), andCross-evaluation(opposite platform,
shown in blue). For each of the testing phases, time constraints were introduced guiding the user towards aFast(5 seconds),
Moderate(15 seconds), orSlow(25 seconds) execution speed. Task executions duringTrainingwere not time constrained.

different prescribed task execution speeds:Fastspeed – 5 seconds,Moderatespeed – 15 seconds, andSlowspeed – 25 seconds.
Auditory and verbal cues were provided for time keeping. They consisted of auditory beeps in one second increments and a
verbal countdown of the time remaining in �ve second increments (e.g., “Fifteen" beep beep beep beep “Ten"). A graphical
representation of the whole experimental protocol can be seen in Figure2.

Five task repetitions for each of the three task execution speeds were presented in a randomized order. An experimenter
monitored the process, and whenever the participant exceeded a� 5 seconds interval from the prescribed time, the prescribed
time was presented again on the following repetition. Given the propensity for participants to perform the task at theModerate
speed (15 seconds), the experimenter often asked participants to repeat the extreme speeds (5 and 25 seconds). This close
monitoring of the execution time allowed the experimenter to guide the participant through an evenly distributed sampling
across the speed-accuracy space.

Performance Metrics and Statistical Analysis
For each needle insertion, we measured the Euclidean distanceDi(n) of displacement for each ring with respect to its resting
position. This displacement measure was averaged for each trial and summed across the three rings as follows:

Mean Ring Displacement=
3

å
i= 1

�
å nDi(n)
max(n)

�
(1)

Wherei represents the ring number, andn the speci�c data point while sampling at 60Hz. TheMean Ring Displacementmetric
is therefore a single number describing the average displacement error (mm) for each trial (see23 for complete details). This
performance metric was chosen as it accounts for both needle trajectory error and execution speed.

The three speed classes (Fast, Moderate, Slow), originally de�ned by the requested time, were rede�ned through clustering
analysis based on participants' actual completion time. The resulting three effective task execution times are created by splitting
the actual completion time distributions at the 33rd (11.65 seconds) and 66th (18.13 seconds) percentiles. This newly de�ned
effective task execution time allowed for statistical comparisons over almost even samples distributions (Fast: less than 11.65
seconds, # samples=550;Moderate: between 11.65 and 18.13, # samples=549;Slow: more than 18.13 seconds, # samples=549).

Considering the large behavioral variability that was allowed (and observed) between participants during theTraining
phase, we will not perform any statistical analysis on theTraining phase data. We are therefore not able to analyze the effect of
CB-atDCS during theTrainingphase.

Using a Generalized Linear Mixed Model (GLMM) we de�nedMean Ring Displacementas an independent variable, and
Speed (Fast, Medium, Slow), Phase (Baseline, Evaluation, Cross-evaluation), Platform (Virtual, Inanimate), and Protocol
(Sham, CB-atDCS) as dependent variables. The GLMM accounted for the repeated measures design of the experiment and
supported modeling of all the possible interactions between the dependent variables. Model selection was based on the Akaike
Information Criterion (AIC) to balance the trade-off between model �t and model complexity. The model constructed on
the 4-way interaction of all the independent variables (Protocol:Platform:Phase:Speed) resulted in the best AIC performing
model. The 4-way interaction allowed multiple linear hypothesis testing at the lowest granularity level. In analyzing the data,
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we noticed the distribution of theMean Ring Displacementfollowed a log-based skew. This characteristic often occurs in
unsigned error-based metrics which show a high density left-skew in the proximity of zero. We therefore applied a Log10
transformation to our dataset. After such transformation, the residuals of the model pass the Shapiro-Wilk test of normality
(p=0.294). Post-hoc tests were then directly performed on the GLMM estimates using simultaneous t-tests with Satterthwaite's
method. A Bonferroni correction was applied to different groups of simultaneous linear hypotheses, as distributed in Tables1
and2. All statistical analyses were performed in R version 3.5.3.

Results
Overall, participants in all four groups were able to successfully complete the task. Despite not being constrained to a certain
number of trials repetitions during theTrainingphase, we observed that participants completed a similar number of trials in each
of the four groups (Virtual-Sham: tot=299, avg=33.22, std=8.71; Virtual-Stim: tot=336, avg=37.33, std=5.45; Inanimate-Sham:
tot=332, avg=36.88, std=2.75; Inanimate-Stim: tot=352, avg=39.11, std=1.26).

Skill Learning
Participants in all four groups signi�cantly improved their performance fromBaseline(pre-training) toEvaluation(post-
training) at both theModerateandSlowspeeds (p< 0.05). For theFastspeed, groups receiving sham stimulation (Virtual-Sham,
Inanimate-Sham) demonstrated no signi�cant improvements (p> 0.05) fromBaselineto Evaluation. In contrast, groups
receiving CB-atDCS (Virtual-Stim, Inanimate-Stim) did have a statistically signi�cant improvement in error betweenBaseline
andEvaluationat theFastspeed (p< 0.05). See Figure3, Table1, and Table2 for details.

Importantly, participants in all the four groups demonstrated comparable performance atBaselinewith no statistically
signi�cant difference atBaselinebetween groups on the same platform or on different platforms (p> 0.05). Overall, these
�ndings suggest that, with comparable initial skill, groups receiving CB-atDCS improved Skill Learning at theFastspeed
whereas groups receiving Sham did not.

Skill Transfer
Transfer from real to virtual environment: Participants in the Inanimate-Sham and Inanimate-Stim groups demonstrated no
signi�cant difference in performance between theEvaluationphase (post-training) on the Inanimate END platform and the
Cross-evaluationphase on the Virtual END platform atModerateandSlowspeeds (p> 0.05). Likewise, performance in the
Cross-evaluationphase was signi�cantly higher (lower error) thanBaseline(p< 0.05) for theModerateandSlowspeeds. At the
Fastspeed, however, there was no signi�cant difference between performance in theCross-evaluationphase and performance
in Baseline(p> 0.05).

Transfer from virtual to real environment: Participants in the Virtual-Sham group, signi�cantly decreased their performance
(higher errors) (p< 0.05) between theEvaluationphase on the Virtual END platform and theCross-evaluationon the Inanimate
END platform atModerateandSlowspeeds. Likewise, performance in theCross-evaluationphase was not signi�cantly
different from Baseline(p> 0.05) at theFast, Moderate, andSlow speeds. Conversely, participants in the Virtual-Stim
group, demonstrated no signi�cant difference in performance between theEvaluation(virtual) phase and theCross-evaluation
(inanimate) phase atFastandModeratespeeds (p> 0.05). Likewise, performance in theCross-evaluationphase was signi�cantly
higher (lower errors) thanBaseline(p< 0.05) at theFastandModeratespeeds. At theSlowspeed, there was no signi�cant
difference inCross-evaluationandBaselineperformance for the Virtual-Stim group (p> 0.05). See Figure3, Table1, and Table
2 for detailed results.

Overall, these �ndings suggest that, with comparable post-training performance, groups receiving CB-atDCS achieved skill
transfer at theFastandModeratespeeds while groups receiving Sham stimulation did not.

Discussion
In this study, we investigated the effects of cerebellar stimulation delivered during training in a complex surgical visuo-motor
task. We previously demonstrated that our feedback-augmented needle driving task engages error-driven learning and is capable
of measuring signi�cant performance changes in a single training session19. Therefore, we hypothesized that cerebellar anodal
transcranial direct current stimulation (CB-atDCS) applied during training of our feedback-augmented needle driving task
would lead to measurable post-training behavioral changes. Given the task completion time constraints introduced in each of the
testing phases (Baseline, Evaluation, andCross-evaluation), we systematically sampled performance across the speed-accuracy
trade-off, reducing the motor learning process to a single dimensional feature24. As a result, direct quantitative comparisons
on accuracy (at equivalent speeds) were possible across the dataset. Speci�cally, motor learning was evaluated in terms of
Skill Learning(pre- to post-training) andSkill Transfer(post-training transfer from virtual to real task and vice-versa) at three
different execution speeds (Fast, Moderate, andSlow). Our �ndings suggest that groups receiving CB-atDCS improvedSkill
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Figure 3. Overview of the four groups performances. TheMean Ring Displacementmetric (needle trajectory error) is shown
for the three evaluation phases (Baseline, Evaluation, andCross-evaluation) at a speci�c task execution speed (Fast,
Moderate,andSlow). Skill learning: participants in all four groups signi�cantly improved their performance (lower error) from
Baseline(pre-training) toEvaluation(post-training) at both theModerateandSlowspeeds. Furthermore, groups receiving
CB-atDCS signi�cantly improved post-training performance (Evaluation) also at theFastspeed, whereas groups receiving
Sham did not.Skill transfer:both groups trained on the Inanimate platform kept the performance when transferring to the
Virtual platform (Cross-evaluation) at ModerateandSlowspeed (comparable error). The group trained on the Virtual platform
receiving Sham did not transfer the performance when moving to the Inanimate platform (Cross-evaluation) at any speed
(increased error), while the group receiving CB-atDCS did transfer performance atFastandModeratespeeds.

Learningat theFastspeed, while groups receiving Sham did not. Additionally, with comparable post-training performance,
groups receiving CB-atDCS achievedSkill Transferat theFastandModeratespeeds while groups receiving Sham stimulation
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Table 1. TheMeanRingDisplacementmetric is compared for the two
participant groups trained in the Virtual platform (Virtual-Sham, Virtual-Stim).
Skill learning -Baselineto Evaluation(EV-BL) and skill transfer -Baselineto
Cross-evaluation(CR-BL), are shown for theSlow, Moderate, andFastspeeds.

Group Virtual-Sham Virtual-Stim

Skill Learning p-value effect size p-value effect size

(EV-BL)Slow 1.2e-10** 1.42 3.7e-08*** 1.31

(EV-BL)Moderate 1e-08*** 1.23 1.6e-09*** 1.49

(EV-BL)Fast 0.629 0.45 0.008** 0.70

Skill Transfer p-value effect size p-value effect size

(CR-BL)Slow 1.000 0.07 1.000 0.25

(CR-BL)Moderate 1.000 0.13 1.6e-05*** 0.99

(CR-BL)Fast 1.000 -0.01 0.018* 0.72

(CR-EV)Slow 2.3e-11*** -1.35 3.3e-07*** -1.01

(CR-EV)Moderate 1.1e-07*** -1.07 0.556 -0.36

(CR-EV)Fast 0.365 -0.48 1.000 -0.08

� p < 0:05; �� p < 0:01; ��� p < 0:001. Estimates are based on theLog10 data.
Effect size is reported asCohen's d(jdj < 0:2 “negligible", jdj < 0:5 “small",
jdj < 0:8 “medium", otherwise “large").

Table 2. TheMeanRingDisplacementmetric is compared for the two participant
groups trained in the Inanimate platform (Inanimate-Sham, Inanimate-Stim). Skill
learning -Baselineto Evaluation(EV-BL) and skill transfer -Baselineto
Cross-evaluation(CR-BL), are shown for theSlow, Moderate, andFastspeeds.

Group Inanimate-Sham Inanimate-Stim

Skill Learning p-value effect size p-value effect size

(EV-BL)Slow 4e-10*** 1.097 1.3e-11*** 1.453

(EV-BL)Moderate 1.2e-11*** 1.350 9e-05*** 0.804

(EV-BL)Fast 1.000 0.400 0.01* 0.621

Skill Transfer p-value effect size p-value effect size

(CR-BL)Slow 0.003** 0.724 8.8e-09*** 1.225

(CR-BL)Moderate 4.1e-07*** 1.268 6e-05*** 0.932

(CR-BL)Fast 1.000 0.247 1.000 0.252

(CR-EV)Slow 0.074 -0.413 0.299 -0.229

(CR-EV)Moderate 1.000 -0.247 1.000 0.054

(CR-EV)Fast 1.000 -0.173 1.000 -0.376

� p < 0:05; �� p < 0:01; ��� p < 0:001. Estimates are based on theLog10 data. Effect
size is reported asCohen's d(jdj < 0:2 “negligible", jdj < 0:5 “small", jdj < 0:8
“medium", otherwise “large").

did not.
Our �nding of improved skill learning at only theFast speed for participants receiving CB-atDCS could be explained

in the context of the cerebellum's role in motor prediction and update1,16. Producing an accurate movement atFastspeed
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represented the most challenging and demanding aspect of the proposed task (following Fitt's law) and, therefore, the most
likely to bene�t from NIBS stimulation. More speci�cally, constraining participants to execute the task at theFastspeed (5
seconds) forced them to perform the task execution in a more ballistic manner. In this context, participants relied less on
concurrent visual feedback to minimize the error of the needle trajectory. Instead, participants had to rely on the accuracy of the
internal representation of the environment and the task, and, therefore, feedforward mechanisms known to rely on cerebellar
neural substrates. Thus, in this speci�c context CB-atDCS shows a more prominent role, facilitating the learning and execution
of fast yet accurate complex movements. This interpretation aligns with previous studies showing that tDCS improved shooting
precision in ballistic sports like tennis or basketball25–27. Overall, our �ndings on skill learning also �t with recent research
showing promising effects of tDCS compared to sham (mostly applied to M1 or the pre-frontal cortex) in the context of open28,
laparoscopic29–33, robot-assisted34, and virtual reality35 surgical training.

In our previous analysis of the Sham dataset by itself19 we found that the skill transfer process was not bidirectional. While
skills learned on the inanimate needle-driving task were successfully transferred to the Virtual End task, the converse was
not true, skill learned on the virtual needle-driving task did not transfer to the Inanimate END task. The present analysis
extends these �ndings by uncovering a potential role of CB-atDCS in improving skill transfer. Here we found that CB-atDCS
during the inanimate needle-driving task inCross-evaluationwas signi�cantly better than baseline performance on the Virtual
END task, but not signi�cantly different thanEvaluationperformance on the Virtual END task for theFastandModerate
speeds. Stimulation of the cerebellum with tDCS may have created a more generalizable internal representation of the task and
environment dynamics obtained during learning. This might have made it easier for participants to transfer their skill from a
less realistic context (Virtual task) to the real world (Inanimate task). Several studies have been carried out, separately, on the
effects of NIBS applied during virtual reality training36–38; and separately on the transfer of skills from the virtual to the real
world context39–44. To the best of our knowledge,our study is the �rst to investigate the effect of NIBS on the bidirectional
skill transfer between virtual and real-world training.

It is worth considering here that the observations made in this study are heavily in�uenced by the nature of the motor
learning task. Due in part to the absence of haptic feedback, telerobotic surgery requires users to learn a control strategy that
cannot rely innately on the availability of cutaneous and kinesthetic cues to close a sensorimotor loop. In addition, the particular
needle driving task used in this study requires solving an inverse dynamics problem to restrict the six degrees of freedom of the
needle to planar three degree of freedom movement. Thus, the observed �ndings regarding CB-atDCS indicate the utility of
non-invasive brain stimulation on improving complex ecological motor learning tasks. Overall, we envision additional studies
investigating various forms of real-world tasks augmentation. We hope our present work can serve as a starting point for future
researchers hoping to push the forefront of brain stimulation utility across task complexity.

While the results of our study are very promising, there are a few limitations that merit highlighting for future research.
First, despite our positive results, our sample size was relatively small. Second, time constraints during the testing phases, while
effective, were only able to guide the participant towards a generalized and not exact 25, 15, or 5 seconds execution speed.
Likewise, since we limited theTraining phase to 30 minutes (for stimulation consistency) and participants were free to move at
their own selected speed during training, we were not able to control the number of task repetitions during theTrainingphase
for each participant. This limited our ability to perform direct statistical comparisons across subject groups during theTraining
phase. To further optimize our protocol, we envision a more structured data acquisition during theTraining phase, and the
introduction of longitudinally delayed post-training tests to evaluate the effects of CB-atDCS over long-term skill retention. It
would also be interesting to test different stimulation current intensities on separate control groups to investigate the amount of
stimulation required to generate a behavioral change. Likewise, while we do have a sham condition in this study, we do not
have control stimulation sites. Therefore, additional investigations could be conducted to investigate regional speci�city.

Conclusion
We found that cerebellar anodal transcranial direct current stimulation (CB-atDCS) applied during the training of a feedback-
augmented needle driving task leads to measurable post-training behavioral changes both in terms ofSkill LearningandSkill
Transfer. The ability to boost real-world skill acquisition through non-invasive brain stimulation has implications to wide
swath of visuo-motor learning tasks. In particular, when considering the portablility of the CB-atDCS approach utilized here.
Additionally, the present �ndings regarding skill transfer from the virtual to the physical domain has the potential to impact the
�eld of robotic surgery training, as well as healthcare or other industrial applications that involve extensive training in simulated
environments.
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