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Abstract— The lack of haptically aware upper-limb prosthe-
ses forces amputees to rely largely on visual cues to complete
activities of daily living. In contrast, non-amputees inherently
rely on conscious haptic perception and automatic tactile
reflexes to govern volitional actions in situations that do not
allow for constant visual attention. We therefore propose a
myoelectric prosthesis system that reflects these concepts to aid
manipulation performance without direct vision. To implement
this design, we constructed two fabric-based tactile sensors
that measure contact location along the palmar and dorsal
sides of the prosthetic fingers and grasp pressure at the tip
of the prosthetic thumb. Inspired by the natural sensorimotor
system, we use the measurements from these sensors to provide
vibrotactile feedback of contact location and implement a tactile
grasp controller with reflexes that prevent over-grasping and
object slip. We compare this tactile system to a standard myo-
electric prosthesis in a challenging reach-to-pick-and-place task
conducted without direct vision; 17 non-amputee adults took
part in this single-session between-subjects study. Participants
in the tactile group achieved more consistent high performance
compared to participants in the standard group. These results
show that adding contact-location feedback and reflex control
increases the consistency with which objects can be grasped
and moved without direct vision in upper-limb prosthetics.

I. INTRODUCTION

Sensorimotor control is classically divided into two do-
mains: volitional control and reflexive control. Volitional
movement results from high-level cognitive processing,
while reflexes begin with sensory perception [1]. The process
of picking up and relocating an object, such as a pen,
involves both type of movements — a volitional move to
grasp followed by fine, quick grip force adjustments based
on sensed properties like weight and friction [2].

With direct visual observation, reaching for and grasping
everyday objects is trivial. When visual attention must be
directed elsewhere, this task becomes less trivial but is still
relatively easy for non-amputees. In memory-guided reach-
to-grasp tasks without visual feedback, hand posture during
movement updates similarly to that with visual guidance,
with the hand conforming to the contours of the object
upon contact [3]. Tactile cues then help determine motor
coordination in the fingers in order to grasp and lift the object
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Fig. 1. A myoelectric Ottobock hand fitted with custom tactile sensors
being used by a non-amputee to complete a difficult everyday manipulation
task: picking up a thin cylindrical object without directly looking at the
hand or object. Prosthesis users are eager to manipulate objects without
direct vision because such situations frequently arise, as when one is visually
attending to a conversation partner, another task, or a screen. The sense of
touch can naturally fill this perceptual gap.

Searching for a coin in a pocket or picking up a pen
while staring at a screen are tasks that non-amputees ac-
complish predominantly through haptic sensations that drive
sensorimotor control. However, upper-limb amputees using
a myoelectric prosthesis do not have this luxury — standard
commercial prostheses lack the sensory and reflexive prop-
erties of the intact human limb, causing amputees to rely
extensively on visual feedback. Although vision can com-
pensate for some of the missing haptic information [5], there
are situations where vision cannot be so heavily depended
on, such as when lighting conditions are poor or objects
are occluded, or when one is multitasking — for example,
cooking while watching a tutorial. Indeed, 438 users of
transradial electric-powered prostheses ranked “required less
visual attention to perform functions” as their third-highest
priority on average out of 17 possible improvements [6].

One well-studied strategy to reduce reliance on vision
during prosthesis use is to provide referred haptic feedback
of pertinent grasp information [5]. In the context of non-
amputees grasping without vision, tactile cues like contact
detection and localization are important for updating hand
posture to grasp an object correctly. In this way, these
discrete contact events aid volitional control. This paradigm
aligns with discrete event-driven sensory control (DESC)
theory, which describes milestone phases of grasp and lift
as discrete events marked by bursts of activity in tactile
afferents [7]. Previous research applying DESC theory to a
myoelectric prosthesis operated by transradial amputees used
vibrotactile stimulation to provide feedback of object contact
and release, which improved user performance in a virtual
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egg task [8]. Similarly, when vibrotactile feedback of discrete
force increments was added to a myoelectric prosthesis, both
grasping errors and completion time reduced in a box-and-
blocks task performed with reduced visual feedback [9].

Another potential way to reduce reliance on vision is
to implement autonomous grasp controllers that respond to
tactile events such as contact, slip, or sensed cues such as
grasp force. These controllers mimic the natural reflex path-
ways of the intact limb without directly involving the user.
Previous research has shown fewer object breaks and faster
task completion during object manipulation with autonomous
grip control [10]. In addition, such controllers have already
been implemented into some commercial prosthetic hands,
like the Ottobock SensorHand Speed [11].

To date, however, there has been no prior research on
combining haptic feedback with autonomous grasp control
into a cohesive system that mimics the biological princi-
ples of volitional and reflexive control. Likewise, it is not
clear how manipulation performance with such a prosthesis
would compare to a standard commercial prosthesis. In
this paper, we describe the development of a bioinspired
system for prosthesis control that utilizes a custom-built
pressure sensor and a novel contact-location sensor on the
fingers of a commercial prosthetic hand (Fig. 1). Together
the signals from these sensors enable both volitional human-
in-the-loop control through contact-location haptic feedback
and reflexive autonomous grasp control through closed-loop
tactile sensing. We conduct a user study featuring a reach-
to-pick-and-place task to compare the performance of this
bioinspired prosthesis to a standard commercial prosthesis.
Our investigation focuses on the utility of this system in a
dexterous task without direct visual observation, a common
scenario that is similar to picking up and drinking from a
cup of coffee while looking at a computer screen.

II. METHODS

We investigated the ability of 17 participants (12 male
and 5 female, age 30.7 £ 4.1 years) to perform a reach-
to-pick-and-place task using a myoelectric prosthesis in a
between-subjects study with two conditions. The two groups
were balanced for gender and handedness; the two left-
handed participants and one ambidextrous participant all did
the study with the right hand. We chose a between-subjects
design to avoid transfer of skill between conditions and to
better simulate deployment of a particular prosthesis with a
user. All participants were consented according to a protocol
approved by the Ethics Council of the Max Planck Soci-
ety under the Haptic Intelligence Department’s framework
agreement as protocol number FOO5C. The experiment lasted
one hour, and participants not employed by the Max Planck
Society received 8 euros as compensation.

A. Experimental Apparatus

As shown in Fig. 1, the prosthesis consists of a one-degree-
of-freedom (1-DoF) OttoBock SensorHand Speed myoelec-
tric prosthetic hand attached to a wrist brace through a 3D-
printed adaptor so that it can be used by non-amputees.
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Fig. 2. The experimental task involves using a myoelectrically controlled
prosthesis to find, grasp, pick up and move a cylindrical object to another
bin. To simulate situations that lack direct vision, the participant is required
to focus their gaze on a target on the opposing wall throughout the task.

The mass of the hand (approximately 500 g) was partially
offset by a counterweight system (400 g) to better replicate
the loading situation for a transradial amputee who would
wear the prosthesis in place of their amputated hand and
wrist. The prosthesis fingers were fitted with two custom-
made piezoresistive fabric sensors that measure pressure and
contact location, as detailed in Section II-A.2. The speed
of the hand’s grasping DoF is controlled proportionally
through surface electromyographic (SEMG) signals from the
user’s wrist flexor and extensor muscles. SEMG was acquired
through an 8-channel Delsys Bagnoli EMG system. Vibro-
tactile feedback was provided with a C2 tactor (Engineering
Acoustics, Inc.) mounted above the biceps muscle and driven
by a custom-built linear current amplifier. Data acquisition
and control were done at 1000 Hz with MATLAB/Simulink
(2019a) and an NI myRIO running on QUARC real-time
software (2020 v4.0.3032). The sensor placement and overall
setup are shown in Fig. 2.

Motion capture was implemented using a seven-camera
Vicon Vantage system with Vicon Nexus software (v2.11.0).
Optical markers were placed on the prosthesis as well as
the task object. Force data was acquired with a custom-
built force plate consisting of four ATI Mini40 force sensors
capable of measuring up to 480N in the vertical direction.
Force signals were acquired with an NI 6255 DAQ. Tobii
Pro Glasses 2 were used to track the user’s gaze, which was
recorded and processed via iMotions software (v8.2). All
data streams were synchronized using a mechanical switch
to denote the start and end of each study session.

1) sEMG Calibration & Myoelectric Control: To calibrate
the SEMG for the wrist flexor and extensor muscles, partic-
ipants first donned the prosthesis device. Next, they were
asked to lift their arm and hold still for 5 seconds for a
baseline SEMG measurement. Finally, they were asked to
perform wrist flexion and extension at maximum voluntary
contraction (MVC) for 5 seconds each. The offset was
calculated for each of the SEMG signals using the baseline
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measurement. 50% of the average flexion was used as the
upper threshold for flexion. The lower threshold for flexion
was set to the average contraction of the flexor muscle during
the extension MVC or to 5% of the flexion MVC, whichever
was higher. The same was done to calculate the upper and
lower thresholds for the extension signal.

The baseline offset was added to each of the SEMG sig-
nals. Then, using the respective lower and upper thresholds,
each of the signals was normalized between the minimum
(0.55V) and maximum (1.5V) voltage for the Ottobock
hand’s motor. The control law for closing the hand was

(Sy—fr)(1.5V—0.55V)

e +0.55V

y Sp>friuc>uo

(D

Ue = .
, otherwise

where Sy is the offset flexor signal, and fy and f; are

the upper and lower flexion thresholds. The control law for

opening the hand was
(Se=er)(1.5V=055V) | g sey;

ey —er,
0 , otherwise

9 Se>er;uo>uc

2

Uy =

where S, is the offset extensor signal, and ey and ey, are
the upper and lower extension thresholds.

2) Sensors: Both sensors used on the prosthesis were
custom designed and constructed; see Fig. 1.

a) Pressure Sensor: The pressure sensor was placed
on the thumb of the prosthesis to measure grasp force. It
consists of three layers of fabric: the top and bottom layers
are conductive fabric, and the middle layer is piezoresistive
fabric. The sensor functions as a variable resistor whose
resistance reduces with pressure; the design is based on work
by Osborn et al. [12]. The sensor is implemented in a voltage
divider circuit, whereby a voltage is applied across the sensor
and a 1k resistor connected in series with it. As pressure
increases, the measured voltage across the resistor increases.

b) Contact-location Sensor: The contact-location sen-
sor was wrapped around the fingers of the prosthesis and
covers both the palmar and dorsal sections. The sensor
consists of one layer of piezoresistive fabric and one layer
of conductive fabric. Both layers are fixed within an outer
silicone frame (SmoothOn Ecoflex 30) and separated from
each other by a thin air gap. A voltage gradient is created
across the length of the piezoresistive layer, so that a distinct
voltage is elicited depending on where the conductive layer
contacts the piezoresistive layer, as conceptually demon-
strated in Fig. 3.

3) Sensorimotor-inspired System: The bioinspired system
includes vibrotactile feedback of contact location, which
aims to aid haptically guided volitional control, and au-
tonomous reflex controllers, which react to tactile events.

a) Vibrotactile feedback of contact location: Vibrotac-
tile feedback was provided by a C2 tactor (Engineering
Acoustics, Inc.) which was driven according to signals
from the contact-location and pressure sensors. The contact-
location sensor signals were first normalized between 0
(proximal) and 1 (distal), with respect to the prosthesis finger,
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Fig. 3. Contact-location sensor: a) and b) show the silicone frames of

the top and bottom layers of the sensor, respectively. Item c) is the long
layer of conductive fabric; d) and e) are the conductive fabric electrodes
attached to the two ends of f) the lower piezoresistive fabric layer, which
has a voltage gradient across its length. The sensor is wrapped around the
curved external surface of the fingers of g) the prosthesis. When something
touches the outside of the sensor, the top layer of conductive fabric touches
the bottom layer of piezoresistive fabric at the contact point. The voltage
measured on the conductive fabric can be used to identify the location point
along the length of the sensor.

regardless of whether the contact was on the palmar or dorsal
side of the finger.

Contact on the dorsal aspect of the fingers was mapped
to a constant vibration, while contact on the palmar aspect
caused a pulsing vibration. Contact near the tip of the fingers
elicits a lower intensity vibration than contact at the proximal
part of the fingers. The mapping from the normalized sensor
signal X to the current input to the C2 tactor I for both
dorsal and palmar finger contact is as follows:

~ J05A- VI X -sin(2r Jif; - 250Hz - ), dorsal
E()-05A-y1—X -sin (27 Cryi‘lleft) , palm(a;
)

where FE(t) is an envelope function denoted by
| sin (27rc;icl‘e -4.75Hz - t)|. When an object is grasped
and the pressure sensor signal exceeds a heuristically
determined threshold p,, the frequency of the vibration f
linearly decreases from 250 Hz to 150 Hz over a period of
2s; these frequencies are well within the range that is easily
detected by humans [13].

b) Reflex Controllers: Both algorithms described here
are based on work by Osborn et al. [10].

i) Over-grasp Controller: This controller prevents

over-grasping by modulating the closing command . to the
motor according to the control law

u.-e %P p>p, palmar
Ue = . “)
Ue , otherwise
where K is the gain, p is the pressure sensor signal, and p,
is the pressure threshold for detecting grasp.

ii) Anti-slip Controller: The pressure sensor signal
was used to determine when slip events occurred and to
differentiate between fast and slow slip. Fast slips were
determined by looking for rapid decreases in the pressure,
as follows:

) % < dfs

Slip, =
Pr 0 , otherwise

®)

where % is the time derivative of the pressure sensor signal
and gy, is a negative threshold. When a fast slip occurs, a
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closing command is sent to the motor at maximum voltage
for 60 ms to prevent the object from falling out of the hand,
which is similar to the reaction times for grasp tightening in
human response to slip [14].

Slow slips were determined as follows:

Slip, = (©)

1 ,p(t) _p(t_05s) < Pss
0 , otherwise

where p(t) is the pressure sensor signal at the current time

point (measured in seconds) and p,s is a negative threshold.

When a slow slip occurs, a closing command is sent to the

motor at maximum voltage for 30 ms. Response time from

slip detection to grasp activation was less than 1 ms.

B. Experimental Protocol

1) Experiment Task: Participants were asked to complete
a reach-to-pick-and-place task with an aluminum cylindrical
object (12cm long, 2cm diameter) using the myoelectric
prosthesis. The cylinder approximates the size and shape
of many objects that are encountered in daily life, such
as a whiteboard marker or a screwdriver. As an additional
constraint, participants were required to complete the task
without looking directly at the object; instead, they looked
at a visual target on the wall in front of them. Eye-tracking
glasses were used to record their gaze direction for post-
study analysis. This difficult task was designed to mimic a
multitasking situation in which vision is directed away from
the hand, such as when picking up a drink while watching
a film. The supplementary video for this paper presents four
sample trials from the study from two viewpoints.

Because of the small diameter of the object and the
geometry of the prosthetic hand, there is an optimal grasping
location and orientation of the prosthetic hand with respect
to the object. Thus, we hypothesized that haptic feedback of
contact location could help guide participants to the optimal
grasping posture and location. Furthermore, grasping the
object with excessive force causes it to slide out of the grasp.
The over-grasp controller is designed to help prevent this
manipulation error. Finally, slips that occur during the pick-
up or set-down phase of the reach-to-pick-and-place task can
be prevented by the anti-slip controller. Thus, the selected
task evaluates both volitional and reflexive components of
the sensorimotor-inspired system.

Two stationary bins were used, as shown in Figs. 1 and 2.
The task began with the object in the start bin (3.8 x 3.8 x 7.6
cm) and was complete when the object was placed in the end
bin (3.8 x 3.8 x 5.1 cm). The bin centers are 17.5 cm apart.

2) User Study Procedure: Participants were randomized
into two groups to conduct the task using either a standard
myoelectric prosthesis (standard condition) or a myoelectric
prosthesis with the vibrotactile feedback and tactile reflex
control detailed in Sections II-A.3.a and II-A.3.b (tactile
condition). For consistency, the tactile sensors were attached
to the prosthesis in both conditions but were not used in the
standard condition.

The eye-tracking glasses prevented participants from being
able to wear their own prescription glasses during the experi-
ment. They were therefore required to demonstrate an ability
to read the largest line on a vision chart from a distance
of 3 m. All participants passed this test. Participants then
completed a demographics survey with questions regarding
their occupation, age, gender, handedness, and experience
using haptic devices and myoelectric devices.

After completing the survey, participants donned the pros-
thesis by inserting their right hand into the wrist brace and
tightening the straps to a comfortable level. The experimenter
cleaned the skin over the right wrist flexor and extensor
muscle groups before attaching the SEMG electrodes. Next,
participants completed the calibration procedure for the
SEMG signals as described in Section II-A.1. If participants
were assigned to the tactile condition, a C2 tactor was
attached to their right bicep near the elbow.

Participants were then allowed to practice controlling the
prosthetic hand using their SEMG signals; wrist flexion
causes the hand to close, and wrist extension causes it to
open. In order to account for drift in the SEMG signals,
which is a well-documented phenomenon of SEMG [15], the
experimenter first demonstrated the degraded control behav-
ior that occurs as a result of signal drift. She then showed
participants how to re-zero the sSEMG signals by reaching
a specified position with the prosthetic hand. Participants
were allowed to re-zero their SEMG signals at will, or when
prompted by an experimenter observing the sEMG signals
during the experiment.

The experimenter then had the participant don the eye-
tracking glasses. To calibrate the glasses, participants held
out a Tobii eye-tracking glasses calibration card at arm’s
length, and calibration was completed using iMotions.

After setup, participants went through a training session
in which the experimenter coached them through the best
strategy for completing the task. Participants were then
allowed to successfully complete the task while observing
the hand and the object. After two successful completions,
participants were given five minutes of practice time to try
doing the task while looking at the wall target, which greatly
increases the difficulty. This five-minute-long practice time
without direct vision ended early after two successes.

Participants then completed twenty trials of reach-to-pick-
and-place with the object, always focusing their gaze on the
wall target. Each trial started when the experimenter placed
the object inside the start bin and was limited to 60 seconds.
If the participant was able to complete the task successfully
before time was up, the experimenter pressed a button to
end the trial. If the participant failed to complete the task
in the allotted time, they simply proceeded to the next trial.
Sample traces for signals of interests are depicted in Fig. 4
for a representative successful trial from a participant in the
tactile condition.

After the experiment, participants completed a post-
experiment survey based on the NASA-TLX questionnaire
[16]. It had a mix of sliding-scale and short-answer questions.
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Fig. 4. Excerpt of time-series traces from a representative participant’s trial
in the tactile group as they found, grasped, picked up, moved, and set down
the object. The dotted line indicates the time point when the participant
successfully placed the object into the end bin. The traces shown are the
closing command wu., the grip aperture a, the pressure sensor signal p, the
contact location sensor signal z, the C2 tactor signal I, and the object’s
displacement D from the end bin and height H above the force plate as
measured by the motion-capture cameras. The participant first attempts to
localize the prosthesis hand on the object as shown by the contact-location
signal and C2 current traces. Next, the participant activates their EMG,
which is modulated once the pressure sensor signal ramps up. One fast slip
event is also detected from the pressure sensor signal and compensated for.

C. Metrics

Each metric described below was calculated for every trial.
The statistical analysis used the mean of each metric across
the twenty trials completed by each participant.

1) Task Completion Score: Participants received a score
based on the milestones they achieved (determined using the
motion-tracking data and the trial end button), as shown in
Fig. 5(a). Lifting the object from the start bin merited a score
of 0.33. If the object was then moved to within 6 cm of the
end bin, the score increased to 0.67. Finally, successfully
placing the object in the end bin earned the maximum score
of 1.00.

2) Time Remaining: The amount of time remaining in the
task was also measured. If a participant failed to complete
the task, there were 0 seconds remaining. If the participant
completed the task just as the allotted 60 seconds ran out,
the time remaining for that trial was set to 0.1 seconds.

3) Proportion of Time Spent Looking Away From the
Visual Target: An automated area-of-interest (AOI) was
defined around the visual target for the eye-tracking videos
in iMotions. For each trial, this metric was calculated by
dividing the amount of time that the participant looked away
from the AOI by the total trial time. The resulting proportion
shows how much the subject looked away from the wall
target; low values indicate compliance, and high values show
that the subject may have cheated and looked at the object.

4) Exploration Contact Rate: We analyzed the contact-
location sensor data to count the number of contacts that
the prosthesis fingers made before grasping; this value was
normalized by dividing it by the trial time to yield a rate.
If the trial was unsuccessful, the trial time was 60 seconds.
This metric reflects the exploratory procedure used by the

participant in order to find the optimal grasping location.

5) Fast Slip Rate: The number of fast slips was calculated
using the slip detection algorithm applied to the pressure
sensor signal, as described in Section II-A.3.b. This number
was also normalized by dividing by the trial time. Fast slips
were likely to occur as a result of over-grasping, or during
the pick-up or set-down phases of the task.

6) Survey: The post-experiment survey asked participants
to separately rate their perceived performance in locating,
grasping, lifting, moving, and setting down the object in the
end bin. Their average perceived performance was calculated
as the average of all five performance ratings. The survey
also asked participants to rate mental effort, physical effort,
physical comfort, and time pressure. Next, participants rated
their use of visual, auditory, and somatosensory cues. Finally,
participants were asked to share any comments on their
experience and suggest improvements.

D. Statistical Analysis

All statistical tests were performed in RStudio (v1.2.1335).
All t-tests performed were Welch’s. Levene’s test for homo-
geneity of variance was done for each metric. A MANOVA
was performed to jointly assess score and time remaining,
which was followed up by linear discriminant analysis (LDA)
and individual t-tests for score and time remaining. The
coefficients of the LDA indicate the extent to which the
predictors can discriminate between the two conditions.
A t-test was used to assess the proportion of time spent
looking away from the visual target. A robust MANOVA
[17] was also used to jointly assess score, fast slip rate, and
exploratory contact rate. LDA was performed as follow-up,
with additional one-way comparisons using t-tests.

Levene’s variance test was also performed for the rating
questions. T-tests were used to analyze all of the rating
questions in the survey, except time pressure, since this last
measure was not normally distributed; Wilcoxon’s rank-sum
test was performed instead. In addition, the ratings of visual
cues were log-transformed before analysis to normalize the
distribution. Finally, we report effect sizes using Pearson’s
correlation coefficient.

III. RESULTS

One participant in the tactile group reported that they
could not feel the vibrations output by the C2 tactor on
their arm; their data were therefore excluded from the entire
analysis, leaving 16 participants (eight in each condition).
The eye-tracking videos were corrupted for two participants,
one of whom was in the standard condition and the other in
the tactile condition. Thus, the eye-tracking metrics do not
include these two users. For the analyses involving pressure
sensor data, two participants in the standard condition were
excluded, as the sensor was not functioning during their
sessions. One of these participants was also excluded in
analyses involving the contact-location sensor’s data for the
same reason.

Fig. 5 shows the main task performance results from this
study. There was a significant difference in the variance
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Task performance. (a) Definition of the scoring metric, which can take values of 0.00 (complete failure), 0.33 (lifted object from start bin), 0.67

(moved object near end bin), and 1.00 (complete success). (b) Average scores for participants in the standard and tactile conditions. (c) Average time
remaining in the task for participants in the two conditions. (d) Relationship between score and time remaining for the two conditions.

of the scores between groups (F'(1,14) = 7.26, p = 0.02).
There was also a significant difference in variance for time
remaining in the task (F'(1,14) = 12.86, p = 0.003). There
was no significant difference in variance for proportion of
time spent looking away from the visual target between the
groups (data not plotted, F'(1,12) = 0.21, p = 0.66), for
exploration rate (F'(1,13) = 0.40, p = 0.54), or for fast slip
rate (F'(1,12) = 0.37, p = 0.56).

The MANOVA indicated a significant effect of condition
on score and time remaining (1" = 1.61, F'(2,13) = 10.45,
p = 0.002). A linear-discriminant analysis was used to
follow up on the MANOVA (error 6.2%). The coefficients
of the discriminant function revealed differentiation of score
(b = 17.23) and time remaining (b = -0.42s~!); namely, the
separation between the standard and tactile groups is based
on an inverse relationship between score and time remaining.
The group separation is depicted in Fig. 5(d).

T-tests for score and time remaining were also used as
a follow-up to the MANOVA. The average score was lower
in the standard group (M = 0.63, SE = 0.10) than in the
tactile group (M = 0.82, SE = 0.01). This difference was
not significant (¢(7.30) = —1.85, p = 0.11), but it has a large
effect size (r > 0.5). The time remaining was lower for the
standard group (M = 16.9s, SE = 3.745s) than the tactile
group (M = 18.6s, SE = 0.78s). This difference was not
significant (£(7.61) = —-0.45, p = 0.67), and the effect size
was small (r = 0.16). Finally, on average, the proportion of
time spent looking away from the visual target was similar

in the standard group (M = 0.19, SE = 0.05) and the tactile
group (M = 0.18, SE = 0.05). This difference was not
significant (£(11.94) = 0.17, p = 0.87), and the effect size
was small (r = 0.04).

Fig. 6 shows the tactile metrics of the sensorimotor-
inspired system plotted against the task performance score. A
robust MANOVA showed a significant effect of condition on
exploration rate, fast slip rate, and score (F' =2.99, p = 0.04).
A linear-discriminant analysis was used as a follow-up (error
7.1%), in which the coefficients of the discriminant function
differentiate exploration rate (b = 8.13s), fast slip rate
(b =-28.65), and score (b = 4.78); the separation between
the standard and tactile groups is based on a positive rela-
tionship between exploration rate and score, and an inverse
relationship between fast slip rate and score.

T-tests were also used to follow-up the exploration rate and
fast slip rate. The average fast slip rate was slightly higher
in the standard group (M = 0.08s~!, SE = 0.01s™1) than
in the tactile group (M = 0.07s~%, SE = 0.007s~!). The
difference was not significant (¢(8.9) = 0.53, p = 0.61) with
a small effect size (r = 0.17). The exploration rate in the
standard group was lower (M = 0.56s~!, SE = 0.05s7 1)
than in the tactile group (M =0.67s~!, SE = 0.05s~!). This
difference was not significant (£(12.8) = —-1.81, p = 0.09),
but the effect size was medium (r = 0.45).

No differences in variances of the ratings from the survey
were found between groups (F(1,14) < 3). In addition, no
significant differences were found between the conditions for

TABLE I
SUMMARY OF STATISTICS FOR THE SURVEY DATA. ALL RATINGS COULD RANGE FROM 0 TO 100.
Standard Tactile Comparison
Mean SE Mean SE Statistic D r
Overall Performance 63.9 7.79 63.3 3.00 t(9.03) = 0.07 0.94 0.02
Mental Effort 56.2 9.28 62.0 4.78 t(10.5) = -0.55 0.59 0.17
Frustration 473 7.88 58.5 5.75 t(12.8) = -1.15 0.27 0.31
Time Pressure 6507 2007" 3807 377577 W =375 060  -0.13
Physical Effort 52.0 6.32 54.0 8.62 t(12.8) = -0.19 0.85 0.05
Physical Comfort 60.0 9.50 60.1 8.80 t(13.9) = -0.01 0.99 0.003
Usage of Auditory Cues 55.5 9.60 53.4 10.8 t(13.8) = 0.15 0.89 0.04
Usage of Visual Cues 36.4 7.20 37.3 10.6 t(13.8) = 0.17 0.87 0.05
Usage of Somatosensory Cues 80.9 6.10 89.6 2.80 t(9.9)=-13 0.22 0.38
T Median reported. i Interquartile range reported.
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Fig. 6. The relationship between exploration contact rate, fast slip rate and
task score.

any of the rating questions. See Table I for a summary of
these statistics.

IV. DISCUSSION

This study investigated the efficacy of haptic feedback of
contact location combined with reflex control in an upper-
limb myoelectric prosthesis. We compared performance to a
standard myoelectric prosthesis in a realistic and difficult
reach-to-pick-and-place task in which vision was limited.
When task performance is assessed jointly with score and
time remaining, there is a difference between the standard
and tactile groups. Namely, although the average time re-
maining in the task was about the same for the two groups,
the participants in the tactile condition more consistently
reached a higher task score, indicating high efficiency.

Consistently grasping the object in the correct place and
with the right amount of force was difficult for many
participants in the standard condition, as highlighted by high
variability in performance. Adding contact-location feedback
and reflex control to the prosthesis improved the consistency
of task execution, as demonstrated by the significantly lower
variability in performance in the tactile condition. It is likely
that the tactile reflex control prevented over-grasping, which
causes the object to roll out of the grasp, and also prevented
slips as the object was being lifted or set down. The utility of
the over-grasp reflex control, however, depended entirely on
the user’s ability to securely and precisely place the fingers
of the prosthesis against the object. Here, it is likely that
the vibrotactile feedback of contact location helped the user
guide the prosthetic hand to the correct grasping location.
This is indicated by the result shown in Fig. 6, where the
tactile group’s consistent, high scores are supported by their
higher exploration rate and lower slip rate. Furthermore, that
the exploration and slip rates were not found separately
to differ based on group implies that the components of
the sensorimotor-inspired system complement each other in
different phases of the reach-to-pick-and-place task.

These findings parallel those from a separate study inves-
tigating the effect of anesthetized fingers on typing when
vision of the keyboard and hands was occluded. There,
rather than significantly changing mean performance, typing
performance variability was significantly impacted [18]. In

this research, as in our current work, proprioceptive and
incidental cues alone seemed to have helped maintain some
accuracy, but precision suffers greatly because of the lack
of cutaneous feedback and limited vision. The congruence
of these results further supports the notion that combining
human-in-the-loop haptic feedback of contact location and
closed-loop tactile reflexes mimics the natural sensorimotor
function of the intact limb.

Interestingly, the two top scorers in the standard condition
outperformed everyone in the tactile condition. Participants
in the tactile group had to learn how to interpret the haptic
feedback in addition to learning how to complete the task.
This additional learning step may have caused the difference
between the top scorers. Also, one high-scoring participant
in the standard group was an aircraft pilot, which requires
mastery of difficult visuospatial tasks. The other high-scorer
said they could create a non-visual 3D representation of the
task area after a few trials. However, their performance was
associated with a mental effort rating of 90 out of 100, which
is higher than the average score of 56.2 in the standard group.

One possible explanation for why there were no mean
differences between the two groups is the large variance
in the standard condition. Participants undoubtedly have
different capabilities, and some adapted to the task better
than others. However, participants in the standard group
were likely punished more for an inability to adapt than
participants in the tactile group. The sensorimotor-inspired
system served as a cushion of sorts against poor performance.
Another reason may be the low number of subjects tested,
which should be remedied in future experiments. Thirdly,
based on comments made by a few participants regarding
their uncertainty in how to interpret the vibrotactile cues,
performance in the tactile group may have been improved
with additional training time. Indeed, a study by Stepp et
al. showed that repeated 30-to-45-minute training sessions
with both visual and vibrotactile feedback in a virtual pick-
and-place task resulted in significant improvement in perfor-
mance compared to the first session [19].

We chose to use vibrotactile feedback because we could
vary the feedback signal continuously, matching the continu-
ous gradient signal of the contact-location sensor. In addition,
vibrotactile feedback has been shown to be beneficial in
prostheses [20]-[22] and is low-cost, low-weight, discreet,
and easy to implement. Furthermore, two participants com-
mented about the usefulness of the vibrotactile feedback —
one user said that the frequency change based on pressure
helped them know if they had grasped correctly, and another
mentioned they could understand the difference between
soft and hard vibrations. Even so, encoding location with
both amplitude and frequency changes of only one tactor’s
output could be difficult for some users to interpret; indeed,
two users mentioned that the changes in amplitude within
a small region of the prosthetic finger were too subtle.
Therefore, future investigations should also consider both
increasing the number of tactors as well as other forms
of haptic feedback for contact location, such as distributed
pressure. Although using individual pressure tactors would
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discretize feedback of the continuous contact-location signal,
the modality-matched nature of the feedback could improve
the results, as less cognitive processing would be required
to interpret the feedback [23], [24]. Another option would
be wearable devices that tap, drag across, or squeeze the
skin; such feedback was previously shown to outperform
vibrotactile cues in motion guidance [25].

Results may differ if the sensors were integrated directly
into a rubber aesthetic glove covering the prosthetic hand.
The slip rate would likely decrease due to the added friction.
However, finding the ideal grasping spot could be more
difficult in the standard condition because incidental haptic
cues normally transmitted through the prosthesis would be
dampened by the rubber.

In conclusion, this paper presented a sensorimotor system
concept for upper-limb prosthetics, inspired by the natural
functions of human motor control. We introduced the design
of a novel contact-location sensor that is integrated into
both the human-in-the-loop haptic feedback and closed-loop
tactile reflex control. Our results show that this system
standardizes performance in a challenging, dexterous task
conducted without direct visual observation. This system
would be beneficial for prosthesis users in conditions where
vision is limited, such as when lighting conditions are
poor, objects are occluded, or when multitasking. Future
work includes validating an improved version of the current
system in an amputee population. As a further next step,
ways to automatically identify when haptic feedback and
automatic grasp control are needed should be investigated.
A system that is context-aware and adapts appropriately to
the user’s needs is necessary in taking upper-limb prosthetics
technology to the next level, similar to how intelligent lower-
limb prostheses have advanced [26].
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