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Abstract

Despite concerted efforts over the last three decades, upper-extremity robotic
rehabilitation has yet to reach its full potential. We assert that assuming the
goal of robotic rehabilitation is to automate conventional therapy may have led
to overly narrow research directions and to mixed results from clinical studies.
Recontextualizing this assumption opens promising research avenues for roboti-
cists. Breaking the robotic device design loop and instead seeking out ‘big data’
opportunities has the potential to identify promising robot-mediated interven-
tions. This will require a shift in roboticists’ attitudes towards participating
in neuroscience and clinical research. By expanding assessment beyond kine-
matics, robotic devices can provide clinicians with a more complete picture of
impairment and recovery. We discuss the current assumptions in greater detail,
and point towards promising research in these revised directions.

Keywords: Robotic Rehabilitation, Upper Extremity, Neuroscience,
Assessment, Therapy

1. Introduction

In this manuscript, we provide a brief review of the standard viewpoint
of roboticists designing devices to be used in post-stroke neurorehabilitation
for the upper extremities, as well as some opinions for ways of reshaping or
redirecting that perspective towards higher-impact research topics. For a more
comprehensive background, we recommend review articles such as the one from
Duret and Mazzoleni [1] for the context on the current state of clinical practice
and the narrative review by Weber and Stein [2] for a broad introduction on
robotic rehabilitation. For the readers interested in a more complete review
of upper extremity devices, we recommend the review by Gull, Bai, and Bak
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[3]. For readers looking for an introduction to robotics used in neuroscience,
we recommend the article by Wolpert and Flanagan [4]. Within that context,
this manuscript starts with three misconceptions or overly narrow definitions
which have, in our opinion, limited research and results, and then proceeds to
propose new viewpoints and promising directions for upper extremity robotic
rehabilitation researchers.

2. What are some shortcomings in the robotic rehabilitation commu-
nity’s current approach?

While the upper extremity robotic rehabilitation field has matured over the
past 30 years, there have been a few guiding principles set from the beginning
which have limited the scope and direction of research. The original framing
of the use case for robotic rehabilitation, set in seminal works such as Krebs et
al. [5], is that robotic devices will enable an automation of therapy tasks. As
in the automation of manufacturing and assembly, the key strength of robotic
devices was seen to be the ability to offload physical labor from workers to robots
which could accurately and repeatedly perform predefined tasks. The end goal
of automated therapy would be a reduction of the physical labor of therapists
and clinicians, with the robotic device performing the requisite high intensity,
long duration training [6] and the high resolution assessment. However, despite
decades of active research, recent studies still find limited or no benefit to robotic
rehabilitation over conventional or dose-matched conventional therapies, as seen
in the RATULS study by Rodgers et al. [7], with similar limitations found in
other large-scale studies and meta-analyses [8, 9]. This attempt has set the field
on a road, depicted in Fig. 1, which has conceptual and procedural obstacles
preventing rehabilitation robotics from achieving its promise.

2.1. Robotic therapy is device design
One proposed solution towards overcoming the limitations seen in these com-

parative studies is the development of more advanced, more capable robotic de-
vices. The idea that there must be a new design just around the corner which
will improve clinical results is alluring to a field of robotic designers. The cur-
rent research approach (of which the authors are most assuredly a part) involves
proposing a new device design for a particular problem and demonstrating these
improvements with a few healthy and impaired study participants. Then with
inconclusive or middling results, the design loop begins again, seeking out new
designs, which possess more advanced kinematics or control, in the hope of dis-
covering the gold standard. Yet, these small-scale studies are fundamentally
incapable of providing statistical significance or exploring the variability and
complexity of stroke impairment and neural recovery required to holistically
inform design considerations.

2.2. Robotic therapy only needs pragmatic neuroscientific principles
In a broader sense, these limited experiments are a symptom of the simpli-

fied and shallow understanding of impairment and recovery. While pragmatic
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principles for neurorehabilitation such as those proposed by Kleim and Jones
concerning repetition and dosage [6] have been accepted, roboticists have only
engaged with these principles of recovery in limited ways. A principle for facil-
itating neural plasticity, healthy motor learning, or adaptation are assumed to
stem from the same (or sufficiently similar) neurological processes, and are there-
fore sufficient for motivating the next design, the next controller, or the next
small-scale study. Furthermore, these small scale studies are often conducted
on chronic stroke participants because of their availability, which overlook the
major changes which are occurring in the first six months post-stroke.

2.3. Robotic therapy assessment is a ‘no-robot’ condition
Finally, stemming from this simplification of impairment and recovery is

the key assumption concerning assessment which has limited the field. Robotic
assessment, as envisioned by Krebs et al. [5] and in the our own works [10]
assumes that assessment occurs after a training session, and consists of min-
imal robotic interaction to determine kinematic properties of motion, such as
spectral arc length [11], submovement analysis [5], or correlation to minimum
jerk trajectories [12] at a higher resolution than is afforded in traditional clinical
assessments. The strong correlation of these robotic assessments of kinematics
to the movement quality assessed in clinical measures [12] suggests that the
robotic devices are providing only a higher resolution, more repeatable measure
of movement quality.

3. What should the robotic rehabilitation community be asking?

With these limiting assumptions, it is understandable that results from all
the biggest studies with upper-extremity robots have led to similar conclusions:
robot-mediated therapy results in recovery similar to conventional therapy at
high dosage. This is a ‘good news’ and ‘bad news’ scenario – while robot-
mediated therapy has fallen well short of promised results, robots have proven
to be safe and effective in delivering complex interventions at the standard level
of care. So, what is next? Should we all just close up our robotics shops? No!
Tremendous need exists, and robots have successfully delivered complex ther-
apeutic interventions. One particularly encouraging recent result discussed by
Senesh, Barragan, and Reinkensmeyer [13] is the value of robotic interventions
for individuals typically left behind by traditional therapies. However, we all
must humbly examine the field, and ask ourselves the tough questions to boldly
construct the new road in Fig. 1, unobscured by the field’s previous assumptions.

3.1. How can the design loop be redesigned?
Rehabilitation roboticists have been focused on automating therapy, seeking

to create a single robot therapist which can balance the sometimes competing
requirements of the clinician: able to transmit high assistive or resistive loads,
make high resolution measurements, and simultaneously develop models of re-
covery and motor learning. However, with the limited efficacy of these all-in-one
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Figure 1: The field of rehabilitation robotics has been on a road towards addressing the current
clinical needs much like the one shown on the left. (A) Device design has become a loop,
focused on developing novel designs at the expense of progress towards the ultimate goals of
the field. (B) Past this design loop, the indiscriminate use of neuroscientific principles without
a guiding direction has reduced the efficacy and potential impact of robotic study designs. (C)
Finally, the simplification of impairment and recovery has led to robotic assessments that are
only capable of providing higher resolution and more consistent variants of existing clinical
measures. We propose a new road which (D) builds off of the pioneering efforts of roboticists
to engage in neuroscientific discovery and (E) uses ‘big data’ to bridge the gaps in the current
understanding of the effects of robotic interventions. (F) Lastly, new methods for assessment
promise to open new lanes for understanding and treating impairment, to bring the field closer
to fulfilling its promise of helping each patient reach their desired level of recovery.

devices, it might not be fruitful to build new robots and go through the same
compromised process as previous researchers. Instead of trying to serve the
entire continuum of care, robots could serve as tools in three important, dis-
tinct ways: assist scientists in discovering breakthrough treatments (science);
assist clinicians with real-time, quantitative, and accurate assessment of pa-
tients’ disability and recovery progress (assessment); and assist clinicians to
deliver customized treatment with high dosage (therapy). This new design loop
might result in more involved designs to address the needs of scientific recovery
and sub-acute treatment, and simpler devices to address the needs of assessment
and chronic stage therapy with high dosage, in-home treatments. For example,
researchers such as Dewald and Ellis [14] have taken this approach and designed
a device specifically for testing neuroscientific hypotheses.

3.2. How can the connection to neuroscience be deepened?
To better design robots for neurorehabilitation, robotics investigators must

re-examine their assumptions and understanding of neuroscientific principles.
For instance, terms such as adaptation, recovery, and learning are often used in-
terchangeably in the engineering circles. However, neuroscience researchers have
been careful to make clear distinctions between different components of appar-
ent improvement. Adaptation as a type of learning usually refers to modifying
internal controllers to recover a prior skill, whereas de novo learning involves
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generating new controllers to complete the goal [15]. For the patient, this could
mean restoration (also known as remediation) of a lost motor function or learn-
ing compensatory ways to complete the activity. Additionally, overall adapta-
tion can be broken down into processes of fast initial learning and slow gradual
retention [15, 16]. Healthy motor learning outcomes observed in the short term
does not imply neurological recovery in the long term. With this in mind, re-
habilitation roboticists should consider how their therapies will influence the
control loops of patients at different timescales. As evidence emerges suggesting
trade-offs between the efficacy and efficiency of motor practice [17], roboticists
might find value in investigating how changing dosing schedules of their ther-
apies will affect patients’ performance in activities of daily living (ADL). To
potentially reduce the complexity of motor control, it may be valuable to inves-
tigate how muscle synergies, or muscle activation patterns, can be targeted via
robotic interaction [18]. Since motor learning does not necessarily imply recov-
ery in all circumstances, it might also be worthwhile for roboticists to explore
deeper mechanisms of recovery.

3.3. How can assessment be improved?
At present, most clinical assessments of motor function are coarse, and can-

not capture the effects of these deeper mechanisms of recovery. Assessments
such as the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT),
Jebsen-Tayler Hand Function Test (JHFT), and Motricity Index (MI), reviewed
by Lang et al. [19] were implemented before the development of the accurate
sensing and measurement systems available today. Even more rudimentary than
motor assessments are the assessments attempting to capture sensory capabil-
ities and, more importantly, sensory impairment. For example, sensory assess-
ments such as the Weinstein Enhanced Sensory Test (WEST-D) [20] and the
Tactile Discrimination Test (TDT) [20, 21] are only capable of measuring force
detection or surface texture discrimination with limited resolution.

As has already been demonstrated with kinematic-based assessments [22],
robotic devices are well-situated to provide higher resolution and individualized
assessments of sensorimotor function. Given the growing evidence that suggests
a need for active sensory interventions and assessments [23], it is worth con-
sidering whether these kinematic assessments alone are sufficient. Regarding
assessment of sensory impairment, robotic devices are capable of increasing the
resolution and variation of stimuli far beyond the limited monofilament tests
in use today [24]. Furthermore, they are capable of assessing all aspects of
sensory function including proprioception [25, 26] and kinesthesia [27, 28]. In
combination with robots, researchers have also begun to exploit psychophysi-
cal measurement techniques in the assessment of sensory function [29, 30, 31].
While these robot-based fine-grained analyses of sensory impairment correlate
well with the existing clinical assessments [32, 33], they offer unique insights
into understanding neurological disorders from the perspective of sensory and
motor function.
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4. What are promising directions for the robotic rehabilitation com-
munity?

Even though assumptions and lack of nuanced understanding about these
foundational principles have limited the perspectives of rehabilitation roboti-
cists, the principles themselves are not incorrect. Rather, they represent central
tenets from which rehabilitation roboticists must expand to fulfill the promise
of robotic rehabilitation. The expanded views of the design loop, the roboti-
cists’ active role in neuroscience, and the robotic assessment of function can be
redirected towards promising or even aspirational objectives.

4.1. Robots as a tool for neuroscience research
Many open questions exist in the area of neurorecovery and robots could

serve as tools in this scientific endeavor. Pioneering efforts by researchers such
as Shadmehr and Holcomb [34] identified promising avenues for using imaging
with robotic interventions to advance neuroscience. Several groups have looked
for principles to guide intervention design, such as studies to determine the
impact of the dimensionality of motion and the joints included [35, 36, 37], the
role of assistance, resistance, and error augmentation at facilitating recovery
[38, 39, 40], and the benefits of individualized selection of practice movements
[41]. Recent works by researchers such as Micera et al. [42] and Gassert and
Dietz [43] have begun to lay the foundation for the next steps in these pursuits.

To build on these impactful contributions, robotics researchers must jump
with both feet in the process of scientific discovery instead of being casual ob-
servers and cursory consumers to scientific knowledge. This will require gaining
expertise and establishing deep collaborations. However to participate in the
discovery journey, the robotics researchers must familiarize with the nitty-gritty
of these fields, such as the discussions by Krakauer [15], to build the vocabu-
lary and perspective needed. For example, robotic devices stand to improve
experimental methods investigating interactions between the corticospinal tract
(CST) and the corticoreticulospinal tract (CRST) [44], the CST’s role in propor-
tional recovery [13], and the potential to indicate motor improvement through
imaging of the CST [45]. Beyond human studies, animal models have identified
promising training modalities, such as the value of bimanual training in improv-
ing bimanual and unimanual function [46], which has broad implications for the
field. With robotic devices to support rodent studies, such as the recent work
from Erwin et al. [47], it may be easier to answer open questions on movement
pattern characterization and optimal treatment combinations that can translate
to human outcomes.

At a higher level view of therapy in practice, researchers and designers should
be aware of the continuum of strategies needed across a pool of patients and
help develop guidelines for scheduling and quantifying dose [48, 49]. Determin-
ing consolidation rest between sessions to ensure long-term pattern retention
should be another associated research priority. Establishing multi-input models
of assigning specific therapy is key to directing informed design of protocols,
which could lead to more desired outcomes in ADL [50, 51]. Other competing
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theories of therapy including biofeedback and spontaneous recovery should be
explored in greater detail [43, 52]. Additionally, the development of strategies
which directly seek to train and restore muscle coordination patterns [18] may
address neural outcomes better.

4.2. Robots designed for ‘big data’
Even with devices designed for science, assessment, or therapy, the rapid pace

at which the device development cycle unfolds limits new devices to, at most,
limited validation through small-sample user studies. Given that single-site val-
idation studies rarely generalize to the broader population, would there be some
advantage to taking the existing suite of robotic devices currently deployed and
leveraging them as data collection nodes in a larger big data framework? This
‘big data’ approach is already revolutionizing healthcare monitoring given the
ubiquity of wearable sensory computing devices [53, 54, 55]. Likewise, ‘big data’
approaches have also been leveraged for automated skill assessment [56, 57, 58]
and the development of training curricula for robot-assisted minimally invasive
surgery (RAMIS), given the countless number of telerobotic surgical systems
deployed in hospitals across the globe [59]. As with these approaches, this big
data framework will support the development and extension of computational
methods for understanding impairment and recovery [50, 51].

The issue with applying big data to rehab robotics currently is that current
methodological approaches in the field tend to rely on small patient samples.
Scaling up these methodologies would require deep understanding and stan-
dardization of field-specific clinimeterics applicable across studies and devices.
Current devices also vary in their interaction quality such as impedance and
inertia, therefore common communication of these parameters would be neces-
sary. In the near term, workshops should be organized in-field with consultation
from clinicians to discuss and finalize open datasets with agreed-upon standards
regarding methodology, ID metrics, clinical measures, and robotic measures.
Furthermore, it may help to advise adoption of open science registration (e.g.,
osf.io) for sharing research protocols and archiving databases. As a starting
point, the distributed laboratory framework established through the Psycholog-
ical Science Accelerator (psysciacc.org) might prove useful in catalyzing these
efforts by leveraging crowd-sourced, open-sharing methodology. Additionally, it
would be beneficial to agree upon providers that allow for personal small dona-
tions and transparent large sponsorships and grants to finance these services,
with preservation funds as emergency backup.

In future studies, rehabilitation roboticists must work with clinicians to
choose the correct target population (for example sub-acute stroke patients [60]
with medium level of disability), create patient-specific therapy (tasks based
on patients’ preferences and at a difficulty level commensurate with their abil-
ities, ensuring that patients are actively participating), and deliver therapy at
intensity much higher than conventional methods (e.g. two orders of magni-
tude greater than conventional therapy). To factor out spontaneous recovery
as a confounding variable between observed recovery and robotic intervention,
dose-matched rehabilitation between conventional and robotic therapies in the
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sub-acute and chronic phases of recovery should be investigated further to quan-
tify significant differences and to characterize distinct biomarkers with neu-
roanatomical and physiological imaging [61, 62].

4.3. Robots as new assessment modalities
Robots are typically endowed with a suite of sensors which open up possibil-

ities of quantitative and reliable assessment of the motor deficits and recovery
processes. However, robots can collect high resolution data beyond kinematics,
which could expand and speed up the assessment process. Robotic devices stand
to further expand the assessment of sensation and perception beyond the limited
methods currently available, and are poised to answer questions about lower-
level mechanisms of impairment and motion through assessment of biosignals
such as muscle coordination patterns [63].

However, there exists an even larger opportunity for using robotic devices to
assess not just function, but learning. This opportunity comes at the intersec-
tion of the three new directions for robotic rehabilitation: big data, neuroscience,
and assessment. By using similar robots at multiple locations and throughout
the continuum of care, there is potential to collect data at multiple locations
on the longitudinal recovery process of many patients. This could lead to data-
driven scientific discoveries and treatments. For example, with the widespread
adoption of devices like the ArmeoSpring passive exoskeleton (Hocoma Inc.),
studies examining models of motor learning and recovery can be made, such as
the recent study by Schweighofer, et al. [16]. In this study, the authors estab-
lished that learning follows dual exponential processes of different speeds, where
only the slow learning process corresponded with improvements in movement
quality. Due to the widespread availability of the ArmeoSpring, there exists an
opportunity to investigate interesting avenues in neuroscientific inquiry, such as
the use of submovement primitives in motion generation. Interesting questions
in therapeutic practice could also be answered, such as the optimal timing and
dosage of the ArmeoSpring intervention for post-stroke rehabilitation.

5. Conclusions

Robotic rehabilitation has grown significantly over the past three decades,
and shown much promise in restoring function after a neurological injury. How-
ever, the view that robotic therapy is automated therapy led to three obstacles
on the road to realizing recovery through rehabilitation robotics. First, while
providing important designs capable of safely and effectively interacting with
users, the design process has become an end in and of itself, and the miss-
ing focus on the robot’s role within the continuum of care has prevented the
field from leveraging big data opportunities. Second, rehabilitation roboticists
must develop close collaborations with neuroscientists and involve ourselves in
the neuroscience behind recovery to fulfill the promise of robotic rehabilitation.
Lastly, the field has overly concerned itself with motor function training and as-
sessment, without considering the importance of sensory function or lower-level
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biosignals. These three directions, namely big data, fundamental neuroscien-
tific research, and expanded assessment, in our opinion, hold the most promise
towards creating new roads for our community.
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