
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 1

Neurophysiological Evaluation of Haptic Feedback
for Myoelectric Prostheses

Neha Thomas , Garrett Ung, Hasan Ayaz , Senior Member, IEEE, and Jeremy D. Brown , Member, IEEE

Abstract—Evaluations of haptic feedback in myoelectric pros-
theses are generally limited to task performance outcomes, which
while necessary, fail to capture the mental effort of the user op-
erating the prosthesis. Cognitive load is usually investigated with
reaction time metrics and secondary task accuracy, which are
indirect, and may not capture the time-varying nature of mental
effort. Here, we propose wearable, wireless functional near infrared
spectroscopy (fNIRS) neuroimaging to provide a continuous direct
assessment of operator mental effort during use of a prosthesis.
Utilizing fNIRS in a two-alternative forced-choice stiffness discrim-
ination task, we asked participants to differentiate objects using
their natural hand, a (traditional) myoelectric prosthesis without
sensory feedback, and a myoelectric prosthesis with haptic (vibro-
tactile) feedback of grip force. Results showed that discrimination
accuracy and mental effort are optimal with the natural hand,
followed by the prosthesis featuring haptic feedback, and then
the traditional prosthesis, particularly for objects whose stiffness
were difficult to differentiate. This experiment highlights the utility
of haptic feedback in improving task performance and lowering
cognitive load for prosthesis use, and demonstrates the potential
for fNIRS to provide a robust measure of cognitive effort for other
human-in-the-loop systems.

Index Terms—Cognitive load, neuroergonomics, functional
near-infrared spectroscopy (fNIRS), haptic feedback, myoelectric
prosthetics.

I. INTRODUCTION

THE glabrous skin of the human hand contains an estimated
17 000 sensory afferents, which are categorized according

to four main receptor types and their associated function [1].
This sheer density of receptors allows for high sensitivity to
the various types of mechanical stimuli encountered in envi-
ronmental exploration, and contributes to the hand’s fine motor
control capabilities. This functionality is lost, however, when the
limbs of the upper-extremity are amputated, resulting in severe
impediments to an individual’s quality of life.
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Amputees often use myoelectric prostheses to restore some of
the functionality of the lost limb. The functionality of clinically
available myoelectric prostheses, however, is limited due to
the lack of touch-based (haptic) sensory feedback. In fact, the
lack of touch-based sensory feedback has been implicated in
the rejection and abandonment of myoelectric prostheses [2].
Amputees who do use myoelectric prostheses must rely heavily
on visual feedback during all activities of daily living to estimate
haptic information like grip force and terminal device aperture.
Visually monitoring the operation of the prosthesis is not ideal
or even feasible in low-light conditions or when objects are
occluded from view. Additionally, the constant visual attention
can impose a large cognitive burden [3], [4].

To reduce the cognitive burden on amputees, some commer-
cial prostheses, such as the Ottobock SensorHand, have been
endowed with smart grip controllers that automatically increase
grip force when necessary to ensure a stable grasp [5], [6]. This
reduced need for amputee intervention in the device’s control
loop allows amputees to focus their visual attention elsewhere.
At the same time, these controllers limit embodiment of the
prosthesis into the amputee’s neuromuscular control scheme
given that the amputee is normally unaware of these automatic
adjustments. Likewise, these controllers are more prone to ex-
cessive object deformation, which is not ideal when grasping
fragile or brittle objects [7]. Given these shortcomings, it is
anecdotally known that some amputees will even choose to turn
the automatic grip control feature off. If amputees had feedback
of their grip force, they could potentially better regulate their
grasping force to prevent object breaks, thereby improving their
ability to manipulate objects.

Haptic feedback is a potentially effective means of providing
touch-based sensory feedback in commercial prostheses, and has
been shown to support prosthesis embodiment through a process
known as extended physiological proprioception [8], [9]. In the
context of prostheses, haptic feedback is typically provided by
mapping information like grip aperture, grip force, object slip,
and contact detection to various types of noninvasive mechanical
stimulation on the surface of the skin [10]–[12]. The mechanical
stimulation is usually in the form of cutaneous feedback modal-
ities such as pressure, skin-stretch, and vibration [13]–[15]. In
particular, vibrotactile feedback has been shown to be a relatively
simple but effective means of providing feedback [15]–[20]. For
example, Raveh et al [16] demonstrated with 12 myoelectric
prosthesis users that vibrotactile feedback of grip force reduced
the time spent performing activities of daily living. Stepp et al
[17] also showed that participants improved their ability to
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relocate a virtual object with repeated training using vibrotactile
feedback. In work done by Pylatiuk et al [21] five myoelectric
prosthesis users were able to better regulate grasping force when
they had vibrotactile feedback.

Haptic feedback has also been shown to reduce cognitive load
compared to visual feedback alone [3], [4]. In these previous
studies, cognitive load was evaluated based on an analysis of
reaction time and accuracy in a secondary task. While secondary
tasks are useful for assessing how well cognitive resources are
shared, they still rely on indirect measures of mental effort,
which artificially introduce lab-contrived distractions that are
inconsistent with real-world use. Additionally, choosing the cor-
rect secondary task is non-trivial; the task can be neither too sim-
ple nor too complex. Furthermore, different secondary tasks are
likely to yield different results, which hinders their reproducibil-
ity and generalizability. Also, secondary tasks only allow for
measurements of cognitive load at discrete intervals throughout a
task, which may not capture the continuous, time-varying nature
of mental effort. Finally, for primary tasks that are relatively
short (10–15 s), the feasibility of secondary tasks is limited.

Measures of cognitive load that do not use secondary tasks
are also possible. For example, the NASA-TLX workload as-
sessment subjectively estimates effort exerted performing a task
through questions regarding mental, physical, and temporal
effort, as well as the perceived performance and frustration
levels of the survey participant [22]. As with secondary tasks,
the TLX survey does not provide a continuous assessment of
cognitive effort. In addition, individual interpretations of the
rating scale can vary depending on past experience [23]. Other
measures of cognitive load that do not involve secondary tasks
include physiological measurements such as heart rate, eye
tracking, electrodermal activity, and respiratory rate [24]–[27].
These physiological measurements, while continuous, can be
highly sensitive to a participant’s existing physical condition
and motion artifacts, as well as environmental factors such as
humidity and illumination [24]. For example, in the case of
eye tracking, long eyelashes, glasses, and droopy eyelids are
physical characteristics that may obstruct or even totally prevent
the quality of eye tracking data [28]. Furthermore, using only
one physiological measure may not result in high accuracy of
mental workload classification [25]. In comparison to these
measures, brain imaging may provide a sufficient measure on
its own. It has been shown that electroencephalography (EEG)
yielded the best classification accuracy compared to separate
assessments of electrodermal activity, electrocardiogram, and
pulse oximetry [25].

The benefit of brain imaging is that it offers a direct measure
of cognitive load that is less susceptible to environmental condi-
tions or the user’s physical condition. In addition, measurements
can be taken from multiple areas of the brain, allowing for
richer and more complex datasets than the other physiological
measures mentioned above. Various neuroimaging modalities
exist, including EEG [29], and functional magnetic resonance
imaging (fMRI) [30]. Each neuroimaging modality has unique
benefits and limitations; EEG has a high temporal resolution
but low spatial resolution and is sensitive to motion artifacts
and muscle activity, fMRI has a high spatial resolution but low

temporal resolution [31]. Furthermore, fMRI studies require
that participants lay stationary inside a scanner within a large
magnetic field, which prevents the use of electromechanical
hardware and altogether limits the diversity of experimental
paradigms.

In addition to EEG and fMRI, functional near infrared spec-
troscopy (fNIRS) has also demonstrated utility in cognitive load
monitoring [32]. fNIRS operates on the principle of absorption
and scattering of infrared light in the tissues of the prefrontal
cortex, a region of the brain responsible for critical thinking, rea-
soning, and decision making. The reflected infrared light is used
to calculate the relative concentration of oxygenated hemoglobin
through the modified Beer–Lambert law. Increased oxygenated
hemoglobin is associated with higher mental effort via neuro-
vascular coupling [32]–[34]. Compared to other neuroimaging
modalities, fNIRS boasts a higher spatial resolution than EEG
and a higher temporal resolution than fMRI, combining the
best characteristics of both. It is also less susceptible to motion
artifacts than EEG and can be used in a variety of dynamic tasks,
including those utilizing electromechanical hardware [35].

In the past several years, fNIRS has been increasingly utilized
to assess cognitive load in a variety of scenarios. In a working
memory task, Fishburn et al [36] confirmed that fNIRS is a
viable alternative to fMRI, as it was sensitive to cognitive load
and state. For skill assessment, Ayaz et al [32] demonstrated
that fNIRS is sensitive to mental task load and practice level:
expertise development in a task results in reduced mental effort,
and that difficult tasks were more cognitively demanding than
moderate ones. Due to its highly portable nature, fNIRS has
also been used in gait assessment [37], [38] and in realistic,
nonlaboratory-based settings such as the assessment of cognitive
load in pilots in both flight simulators and and during real
flight [39].

In a similar manner, fNIRS can be used to assess the effects
of haptic feedback on cognitive load, which up to this point
has not been investigated. In this manuscript, we present the
findings of a study that utilized fNIRS to measure the cognitive
load associated with performing a stiffness discrimination task
using a myoelectric prosthesis featuring vibrotactile feedback
of grip force. Vibrotactile feedback was chosen because it has
often been proposed for myoelectric prosthesis and is simple
to implement [16]–[19]. To provide context to these measures,
we include as additional experimental conditions, a myoelectric
prosthesis without haptic feedback, and the healthy intact hand.
To the author’s knowledge, this is the first investigation into neu-
rophysiological markers of cognitive load for an upper-extremity
myoelectric prosthesis user as well as the effect haptic feedback
has on that load. We hypothesize that the use of the prosthesis
without haptic feedback will result in the highest cognitive load
due to the large reliance on visual cues compared to the other
two experimental conditions. In addition, we hypothesize that
the intact hand will carry the lowest cognitive burden and result
in the best performance of the three conditions. With this work,
we aim to highlight not only the cognitive benefits of haptic
feedback for prosthesis use, but also a generalized method for
assessing cognitive load in human-in-the-loop systems more
broadly.
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Fig. 1. Prosthesis terminal mated to custom socket for able-bodied individuals.
Vibrotactile actuator is placed on the upper arm just above the elbow.

II. METHODS

A. Participants

We investigated the ability of n=10 able-bodied individuals
(8 male, 2 female, age = 21.4 ± 3.5 years) to perform an object
discrimination task using a mock myoelectric prosthesis in three
different feedback conditions. The duration of the experiment
was approximately 60 min and participants were compensated
at a rate of $10/h. All participants were consented according to
a protocol approved by the Johns Hopkins School of Medicine
Institutional Review Board (Study# IRB00147458).

B. Experimental Apparatus

The mock prosthesis (see Fig. 1) consists of a 1-DOF
voluntary-closing prosthetic terminal device attached to a cus-
tom prosthetic socket, which was designed to be worn by nonam-
putee participants. A custom-built piezoresistive sensor based on
work by Osborn et al. [40], was placed over one of the terminal
device’s fingers to measure grip force. The prosthetic terminal
device was driven via a Bowden cable connected to a custom
linear actuator drive, and operates in a manner similar to that
featured in Thomas et al. [20], where actuation of the linear
actuator pulls or releases the Bowden cable to close or open the
terminal device, respectively.

Vibrotactile feedback was provided by a C-2 tactor controlled
through a Tactor-Control Unit (Engineering Acoustics, Inc.).
The C-2 tactor was encased within a 3-D printed housing and
secured to the skin of the participant’s upper arm just above the
elbow and over the right bicep with a Velcro strap (see Fig. 1).

A Delsys Bagnoli 16-channel electromyographic (EMG) sys-
tem with two surface electrodes was used to acquire EMG signals
from the participant’s right wrist flexor and extensor muscle
groups.

Data acquisition and control were implemented at a 1 kHz
sampling rate in MATLAB/Simulink R2017a through a Quanser
QPIDe DAQ with Quanser’s QUARC real-time Simulink block-
set and a custom block containing the Engineering Acoustics
API. The entire system was controlled by a Dell Precision T5810
desktop.

An fNIR Imager (Model 1100 W; fNIR Devices, LLC) with
two-optode sensor pads was used to measure hemodynamic
activity in the prefrontal cortex [41]. COBI Studio software was
used to acquire the optical signals at a 4 Hz sampling rate [42].

Fig. 2. Blocks are visible when individually presented to subjects. The ter-
minal device rests on support block while the participant squeezes the object
within the barrier’s opening.

Fig. 3. fNIRS sensor pads are placed on the participant’s forehead and covered
with a headband. The sensor pad has two LED light sources and four detectors,
yielding four channels of data from left/right medial/lateral prefrontal cortex.

The two sources of the fNIRS headband emit infrared light
into the tissues of the prefrontal cortex, and the four detectors
measure the reflected infrared light (see Fig. 3). This data is
postprocessed using COBI Studio’s built-in analysis tool, which
applies the modified Beer–Lambert law to calculate the total
hemoglobin concentration [32]. Event markers from Simulink
were sent to COBI Studio via USB-Serial to synchronize data
from the two data acquisition systems.

C. EMG Calibration and Processing

After the participants were consented in the study, they were
seated at the experimental table to begin EMG calibration. The
experimenter first asked the participant to flex or extend their
wrist while palpating their forearm to locate the belly of the
appropriate muscle. The experimenter placed one EMG elec-
trode on the participant’s right wrist flexor muscle group, one
EMG electrode on the participant’s right wrist extensor muscle
group, and a ground electrode on the participant’s right elbow. A
compression sleeve was fitted over the participant’s right arm to
secure the wires and electrodes in place. The experimenter then
helped the participant don the mock prosthesis on their right
arm. The base of the terminal device rested on top of the support
block (see Fig. 2) and the socket on an arm rest.

To calibrate the EMG signals, participants were asked to flex
or extend their wrist several times for a period of seven seconds.
Participants were told to keep contraction levels to minimum
effort. The maximum EMG signals for both flexion and ex-
tension pulses were separately averaged and used to normalize
the EMG signals for flexion and extension movements during
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the experiment. This approach has proved successful with our
experimental apparatus in prior studies [20].

D. Prosthesis Control

The prosthesis terminal device opening and closing velocity
was proportionally controlled by the wrist extension and flexion
EMG signals, respectively. Participants used the prosthesis to
squeeze objects which are described in detail in Section II-E1.
During device closing, the prosthesis actuator command was
set to zero once the prosthesis aperture reached a threshold
(Ec) as measured by the encoder on the back of the motor.
This software stop was incorporated to minimize the auditory
cues originating from the linear actuator, and to prevent damage
to actuator components. Similarly, during device opening, the
prosthesis actuator was disabled once the prosthesis aperture
reached another threshold (Eo) to prevent damage to the actuator
components.

The control law for operating the prosthesis terminal device
velocity up under proportional EMG control was

up =

⎧⎨
⎩

Snet ·K1, Snet > 0& E ≤ Ec

Snet ·K2, Snet < 0& E ≥ Eo

0, otherwise
(1)

Snet = ‖Sflex‖ − ‖Sext‖ (2)

whereSnet is the net EMG signal calculated using the normalized
EMG wrist flexor signal ‖Sflex‖ and the normalized EMG wrist
extensor signal ‖Sext‖ as indicated in (2). K1 is the proportional
gain applied to Snet for device closing, E is the encoder reading
on the back of the linear actuator motor, Ec is the encoder
threshold during device closing, K2 is the gain applied to the
Snet for device opening, and Eo is the encoder threshold during
device opening. If the device has closed beyond the threshold
(E > Ec), or if the terminal device is fully opened (E ≤ Eo),
the motor command is set to zero.

E. Vibrotactile Feedback Operation

When participants flex their wrist, the EMG flexor signal
increases, which in turn drives the prosthesis actuator to pull
on the Bowden cable and close the terminal device. The signal
from the piezoresistive force sensor on the prosthesis terminal
device is used to drive the amplitude of the vibrotactile actuator.
The frequency of the vibrations was always 250 Hz.

The control law for vibrotactile feedback amplitude was

uV = KF · F 2 (3)

where KF is the gain, and F , the piezoresistive force sensor
signal, is squared to provide better separation in the force signals
for the test objects. This mapping was chosen over a linear
mapping through pilot testing, as it yielded better discrimination
of the stimuli.

1) Stimuli: Participants were asked to discriminate pairs of
blocks with different stiffness. Three Ecoflex Smooth-On silicon
blocks were used: soft (Shore Hardness 00–20), medium (Shore
Hardness 00–30), and hard (Shore Hardness 00–50). Blocks
were fit into custom 3D-printed holders and covered in a thin

black cotton fabric to prevent the participant from distinguishing
the blocks based on unintended visual blemishes. Sample blocks
(Dragon Skin 10 with Shore hardness 10 A and Ecoflex 35 with
Shore hardness 00–35), were provided only for the participant
to practice, as described in Section II-F.

F. Protocol

Participants were randomly split into two groups (A and B).
Group A performed the task in the following condition order:
(1) natural hand, (2) myoelectric prosthesis without vibrotactile
feedback, and (3) myoelectric prosthesis with vibrotactile feed-
back. Group B performed the task in the following condition
order: (1) natural hand, (2) myoelectric prosthesis with vibrotac-
tile feedback, and (3) myoelectric prosthesis without vibrotactile
feedback. Before performing the tasks, participants completed
a brief survey regarding their demographics, handedness, and
experience with haptic devices, myoelectric devices, and fNIRS.

Prior to starting the experiment, participants were allowed
to practice with sample blocks. As in the actual experiment,
sample blocks were placed behind a physical barrier with a small
opening that occluded the top part of the block to avoid distin-
guishable visual blemishes. The base of the prosthesis terminal
device was placed on the support block (shown in Fig. 2) such
that the fingers of the terminal device were within the opening
of the physical barrier. Participants first practiced squeezing the
sample blocks with the myoelectric prosthesis until comfortable
with the controls. Afterward, the mock prosthesis was removed
and a piezoresistive force sensor ring, similar to the sensor
in Fig. 1, was placed on the index finger of their right hand.
Participants were able to practice squeezing the sample blocks
with their hand with the force sensor attached. The force sensor
on the participant’s hand was used to measure squeezing during
the control condition.

Once the participant completed the practice session, the ex-
perimenter placed the fNIRS sensor pads on the left and right
anterior lateral parts of the participant’s forehead (see Fig. 3). A
headband was placed over the sensor pad to block out ambient
light.

The three test blocks (soft, medium, and hard) were presented
in six pairwise permutations whose order was randomized. Each
pairwise permutation was repeated three times for a total of 18
presentations per condition, or 54 trials for the entire session.
The blocks in the pair were presented to the subject within the
opening of the physical barrier one at a time. In all conditions,
participants were able to observe the deformation of the ob-
jects as they squeezed them. Participants were only allowed to
squeeze each block once, and no repeats of the block pair were
allowed unless EMG or sensor issues arose between the first and
the second block. The duration and force of the squeeze was not
controlled and could vary for each block and participant. After
squeezing the second block, participants verbalized their answer
of which block they thought was stiffer. Correct answer feedback
was not provided for any trial. After each block pair presentation,
participants were given a 15 s break to allow time for the fNIRS
hemodynamic response. See Fig. 4 for representative time-series
signals from the relevant sensors within a single trial. After every
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Fig. 4. Example trial during the vibrotactile ON condition featuring a medium
and soft block. From top to bottom: The normalized net EMG signal, the aperture
in percentage where 100% refers to the aperture of the completely opened
prosthesis and 0% refers to the aperture of the completely closed prosthesis, the
force sensitive fabric sensor voltage output, the peak to peak displacement of the
vibrotactile actuator, and the average change in total hemoglobin concentration
(HbT).

third block pair presentation, participants were given a 30 s
break. During the break, participants completed a two-question
survey regarding their ability to discriminate stiffness in the
previous block pair and their current physical comfort level.

After completing all three conditions, subjects completed a
postcondition survey, based largely on the NASA-TLX ques-
tionnaire [22]. The survey was a mix of short-answer and slider-
scale (0–100) qualitative questions about participants’ perceived
performance and evaluation of the task. Only the postcondition
survey questions will be discussed in detail.

G. Metrics and Statistical Analysis

Mixed models were used to analyze all results. Fixed effects
for models were chosen based on the lowest Bayesian informa-
tion criterion.

1) Task Performance: A logistic mixed-effects model was
used to analyze task accuracy across all three conditions, where
participants were the random effects, and participant group, trial,
and the interaction between block combination and condition
were fixed effects. Note: Some of the block combinations and
conditions (for instance, the intact hand in the soft-medium and
soft-hard block combination) had no errors (100% accuracy).
As it was possible to perfectly predict the accuracy performance
based on the combination of these variables (complete separa-
tion), it was not possible to run the logistic models on these data.
Therefore, we instead ran the models on a perturbed dataset, in
which one of the trials in each perfect session was replaced
with one erroneous trial. Thus, the performance results of the
logistic models presented here are actually slightly weaker than
the original data.

2) fNIRS Performance: A linear mixed-effects model was
used to analyze average change in total hemoglobin concen-
tration, where participants were the random effects and the

Fig. 5. Average accuracy for each condition and block combination. Error
bars represent standard deviation. *indicates p < 0.05, **indicates p < 0.01,
and ***indicates p < 0.001).

interaction between block combination and feedback condition
were fixed effects.

3) Neural Efficiency: In this experiment the neural efficiency
metric captures the relationship between performance and the
cognitive load required to achieve that performance during each
condition. The neural efficiency metric is calculated using the
z-scores of the accuracy of stiffness discrimination z(P ) and
cognitive effort z(CE) data for each condition as shown in (4)
and as described in [43]

NE =
z(P )− z(CE)√

2
. (4)

A linear mixed-effect model was used to analyze the differences
in neural efficiency between each condition, where participants
were the random effects and the condition and participant group
were the fixed effects.

4) Survey: The first question asked participants to rank how
physically demanding the condition was and the second ques-
tion asked participants to rank how mentally demanding the
condition was. The third question asked how hurried or rushed
the task was, while the fourth question asked participants to
rate their perceived accuracy in each condition. Question five
asked participants to rate how discouraged or frustrated they
were during the task. The final question asked participants to
rate how much they used visual, touch-based, and auditory cues
during each condition. Auditory cues from the prosthetic hand’s
motor and gear transmission could be heard during operation of
the prosthesis. A linear mixed effects model was used to analyze
rating results. Group and condition were fixed effects while the
participants were included as a random effect.

III. RESULTS

A. Task Performance

Differences across the conditions are shown in Fig. 5. In the
main result, there was a significant main effect of intercept (β
= 1.65, SE = 0.75, p < 0.05) and trial (β = 0.06, SE = 0.02,
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Fig. 6. Average change in total hemoglobin concentration for each condition
in the right medial prefrontal cortex. Error bars represent standard error of the
mean. * indicates p < 0.05, and *** indicates p< 0.001.

p < 0.01). Group B performed significantly worse than Group
A (β = -0.91, SE = 0.39, p < 0.05).

Medium-hard block combination: The intact hand was signif-
icantly better than vibrotactile ON (β = 3.45, SE = 1.16, p <
0.05) and vibrotactile OFF (β = 4.48, SE = 1.21, p < 0.01).

Soft-medium block combination: The intact hand was signif-
icantly better than vibrotactile ON (β = 2.42, SE = 1.23, p <
0.05) and vibrotactile OFF (β = 5.86, SE = 1.19, p < 0.001).
Vibrotactile ON was also significantly better than vibrotactile
OFF (β = 3.44, SE = 0.71, p < 0.001).

Soft-hard block combination: The intact hand was signif-
icantly better than vibrotactile OFF (β = 4.26, SE = 1.20,
p < 0.01).

Vibrotactile OFF condition: The soft-hard combination accu-
racy was significantly better than the soft-medium accuracy (β
= 1.65, SE = 0.43, p < 0.01). The medium-hard combination
accuracy was also significantly better than the soft-medium
combination accuracy (β = 1.44, SE = 0.41, p < 0.01).

B. fNIRS Measures

Here, we present the average change in total hemoglobin
concentration in the right medial prefrontal cortex as an indicator
of cognitive load. Before experimentation began, it was found
that the detector on the fNIRS sensor pad measuring oxygena-
tion from the right lateral prefrontal cortex was not function-
ing. Therefore, this channel will not be discussed. All other
channels—left lateral, left medial, and right medial prefrontal
cortex were operational. However, we only highlight the most
significant results in the interest of brevity, which occurred in
the right medial prefrontal cortex for trials where participants
answered correctly (see Fig. 6). Please see Fig. 8–12 and Tables
II–VI in the Appendix for the results from the other brain areas,
and results including incorrectly answered trials.

An increased hemoglobin concentration is related to an in-
creased cognitive load. In the main result, there was a significant
effect of intercept (β = 0.33, SE = 0.09, p < 0.001).

Fig. 7. Neural efficiency bar plot for each condition. * indicates p < 0.05, and
*** indicates p < 0.001.

Soft-medium block combination: Vibrotactile OFF resulted in
significantly higher cognitive load than vibrotactile ON (β =
0.24, SE = 0.12, p < 0.05) and the intact hand (β = 0.58, SE =
0.12, p < 0.001). Vibrotactile ON also resulted in significantly
higher cognitive load than the intact hand (β = 0.33, SE = 0.10,
p < 0.001).

Vibrotactile OFF condition: Cognitive load during the soft-
medium block combination was significantly higher than it was
in the medium-hard block combination (β = 0.39, SE = 0.13, p
< 0.05).

Vibrotactile ON condition: The soft-medium block combina-
tion had a higher load than the medium-hard block combination
(β = 0.22, SE = 0.10, p < 0.05). In addition, the soft-medium
block combination approached significantly higher levels of
cognitive load than the soft-hard combination (β = 0.19, SE
= 0.10, p = 0.0685).

C. Neural Efficiency

High neural efficiency is associated with low cognitive load
and high performance. There was a significant effect of intercept
(β = 1.22, SE = 0.22, p < 0.01). There was no difference
between the two participant groups. The intact hand had a higher
neural efficiency compared to vibrotactile ON (β = 0.74, SE =
0.27, p < 0.05) and vibrotactile OFF (β = 2.93, SE = 0.27, p
< 0.001). Vibrotactile ON also had a higher neural efficiency
than vibrotactile OFF (β = 2.19, SE = 0.27, p < 0.001). These
differences are shown in Fig. 7.

D. Surveys

All comparisons for postexperiment surveys are outlined in
Table I. In all comparisons, there was no significant effect of
group. Both prosthesis conditions were rated significantly more
physically demanding than the intact hand condition (p<0.001).
There was no significant effect of intercept (β= 8.77, SE= 7.38,
p = 0.25). Both prosthesis conditions were rated as significantly
more mentally demanding than the intact hand condition (p <
0.001). There was no significant effect of intercept (β = 7.5, SE
=8.8, p = 0.41). Participants rated both prosthesis conditions as
significantly worse in terms of perceived performance accuracy
(p < 0.001). Vibrotactile ON was rated as significantly better
in perceived performance accuracy than vibrotactile OFF (p <
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TABLE I
β AND SE VALUES AND FOR EACH COMPARISON BETWEEN CONDITIONS, WHERE H IS HAND, N IS VIBROTACTILE OFF, AND V IS VIBROTACTILE ON

0.001). There was a significant main effect of intercept (β =
87.7, SE = 5.23, p < 0.001). Participants rated both prosthesis
conditions as significantly more frustrating than the intact hand
condition (vibrotactile OFF: p < 0.001; vibrotactile ON: p <
0.01). Vibrotactile ON was rated as significantly less frustrating
than OFF (p< 0.001). There was no significant effect of intercept
(β = -1.03, SE = 8.06, p = 0.89).

The reported use of visual cues in the vibrotactile OFF con-
dition was significantly more than in the intact hand condition
(p < 0.01). The reported use of visual cues in the vibrotactile
ON condition was significantly less than in the vibrotactile OFF

condition (p < 0.01). There was a significant main effect of
intercept (β = 50.7, SE = 13.1, p < 0.01). Participants rated use
of haptic cues as significantly less in the prosthesis conditions
compared to the intact hand condition (vibrotactile OFF: p <
0.001; vibrotactile ON: p < 0.05). Participants rated use of
haptic cues as significantly more in vibrotactile ON compared
to vibrotactile OFF (p < 0.001). There was a significant effect
of intercept (β = 88.6, SE = 6.2, p < 0.001). Participants rated
use of auditory cues in the prosthesis conditions as significantly
more than the intact hand (vibrotactile OFF: p< 0.01; vibrotactile
ON: p < 0.05). There was no significant difference in reported
auditory cue use between vibrotactile ON and OFF (β = -1.8, SE
= 7.51, p = 0.81). There was no significant effect of intercept
(β = -3.6, SE = 9.87, p = 0.72).

IV. DISCUSSION

In this study, we presented a comparison between two con-
trasting sensory feedback paradigms for upper-extremity pros-
thesis control, along with a comparison of both approaches
to the gold standard, the intact healthy hand. Evaluations in-
cluded standard task performance measures, and most notably,
a neurophysiological measure of mental effort. To the authors’
knowledge, this study marks the first investigation into neuro-
physiologically assessed effects of haptic feedback in a pros-
thesis. Here, we demonstrate the utility of fNIRS for cognitive
load assessments in prostheses, and highlight the cognitive
and task performance benefits of adding haptic feedback to a
myoelectric prosthesis. As expected, we found that the intact
hand performed better than both the standard myoelectric pros-
thesis and the myoelectric prosthesis with vibrotactile feedback
in regard to task accuracy and mental effort. In addition, we
showed that vibrotactile feedback has the potential to reduce
mental effort compared to the standard prosthesis in the ab-
sence of such feedback. While it is anecdotally known that
haptic feedback can reduce cognitive load, direct measures
of brain activity has never been used to validate this with a
prosthesis.

Overall, we found that discriminability varied greatly for dif-
ferent block pairs and feedback conditions. For vibrotactile OFF

in particular, discrimination was the easiest with the soft-hard
and medium-hard pairs, followed by the soft-medium block
pair. The soft-hard and medium-hard discrimination accuracy
were both above chance, indicating that participants were likely
utilizing visual cues and possibly other incidental cues such
as sense of effort, EMG efference copy, and reaction forces
from the Bowden cable actuation scheme that were transmitted
through the socket. The soft and the medium blocks were closer
in stiffness than the other block pairs, which means the visual
deformation cues for these blocks were very similar. The extra
visual attention required to distinguish between these two blocks
is what likely caused the increased cognitive load over other
easier combinations. This was also demonstrated by fNIRS
measures, indicating that they are sensitive to the mental demand
associated with tasks of varying difficulty; a finding that is in line
with fNIRS research in other fields [32], [39].

Meanwhile, for the intact hand and vibrotactile ON, discrim-
inability did not significantly differ between the three block
pairs, thus indicating the robustness of these conditions in terms
of performance accuracy. Likewise, for the intact hand, cog-
nitive load did not significantly differ between the three block
pairs. Cognitive load did, however, differ by block pair in the
vibrotactile ON condition; cognitive load of the soft-medium
pair was significantly higher than the medium-hard pair, and
the cognitive difference between the soft-medium and soft-hard
pairs was approaching significance. In postanalysis, to determine
the percentage of vibrotactile stimuli pairs that were below
the just noticeable difference for vibrotactile stimulation just
proximal to the elbow in the soft-medium pair, a value of 0.4
was used (larger than 0.3 at 250 Hz for the volar forearm [44]).
The percentage of vibrotactile stimuli pairs below this value
was 0% for the soft-medium pair. Therefore, it is likely that the
particular difficulty in discriminating the soft-medium pair did
not arise from a lack of contrast in the vibrotactile cues, but
rather the interplay between visual cues and haptic cues. One
participant expressed they were unsure how to use both cues
together, and another participant mentioned that the vibration
cues did not always match the visual cues. In some cases, the
information from the separate modalities seemed either con-
tradictory or difficult to integrate together. Additionally, it has
previously been shown that that visual cues are weighted more
than haptic cues [45]; therefore, it is possible that in the cases
where participants felt a mismatch between the cues, they chose
to rely on vision.

Within the medium-hard and soft-hard block pairs, vibrotac-
tile ON did not appear to be better than OFF for both performance
and cognitive load. This result alludes to the fact that haptic
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feedback may be most useful in cases, where the task is chal-
lenging without any haptic feedback. Previous work showed
there was no difference in grip force for a grasp and lift task
between both torque and vibration feedback and no feedback,
likely due to the fact that the task was easy to accomplish without
any haptic feedback [46]. Similarly, Markovic et al [47] found
that vibrotactile feedback was only useful in complex, dynamic
tasks.

The intact hand consistently performed better than vibrotactile
OFFin all block pairs, and better than vibrotactile ON in the
medium-hard and soft-medium block pairs. The soft-hard pair
was likely easy enough to perform with both vibrotactile ON

and the intact hand, which is why no significant difference in
accuracy was found between them. Regarding cognitive load, the
intact hand resulted in a significantly lower cognitive demand
for the soft-medium block pair only. It is likely the case that
the other block pairs were too simple to garner cognitive load
differences. In a similar manner, in previous studies such as
n-back working memory as well as air traffic control and flight
simulator tasks resulted in similar cognitive load between tasks,
where the difficulty level was similar [41].

Neural efficiency outcomes furthermore indicate that the in-
tact hand showed a high performance with low cognitive load,
while vibrotactile OFF overall had a low performance with high
cognitive load. Vibrotactile ON was in between, indicating that
haptic feedback bridges the traditional operation and the ideal
operation, the intact hand.

Survey questions largely support the performance and mental
workload measurements. Participants felt their perceived accu-
racy to be the highest with the intact hand, followed by the
vibrotactile ON, and finally vibrotactile OFF. Levels of frustration
followed exactly the opposite trend. Participants also felt their
mental workload was lower with the intact hand compared
to both vibrotactile ON and OFF, but felt no difference over-
all between vibrotactile ON and OFF. This aligns closely with
results from the soft-hard and medium-hard block pairs, for
which no difference were found between vibrotactile ON and
OFF for both performance and mental effort. Participants did,
however, express use of visual cues more in the vibrotactile OFF

condition than the vibrotactile ON condition. For the soft-hard
and medium-hard block pairs, the visual cues likely improved
participants’ accuracy over chance. However, the visual cues for
the soft-medium block pair were likely more subtle and difficult
to interpret, as indicated by the mental workload observed for
this particular pair in the vibrotactile OFF condition.

While survey results showed that participants felt overall
inaccurate in the vibrotactile OFF condition (37.4%), their per-
formance in the medium-hard and soft-hard block pairs ex-
ceeded pure guessing (50%). Even anecdotally, a few partici-
pants commented during the experiment that they were unable
to tell the differences between blocks in the OFF condition.
This indicates that, even if it is possible for participants to
decently discriminate stiffness without haptic feedback, they do
not feel confident in their assessment. Haptic feedback can help
mitigate this uncertainty and could improve users’ confidence
during object interactions. This is in line with the work of

Markovic et al. who concluded based on participants’ subjective
evaluations, that even if haptic feedback does not significantly
improve performance, it could still benefit the users’ subjective
experience [47].

It is also worth considering that participants’ reported use of
auditory cues was not significantly different between vibrotactile
OFF and ON. Given that visual feedback was the same in both
conditions, the differences in cognitive load and performance
are most likely due to the availability of haptic cues. In fact,
there was a significant difference in participants’ reported use
of haptic cues, with the intact hand being the condition, where
haptic cues were used the most, followed by vibrotactile ON, and
then vibrotactile OFF. That participants reported higher usage
of haptic cues in the intact hand compared to vibrotactile ON

indicates that users may not have trusted the vibration stimulus,
due to lack of familiarity and sensory richness compared to
their natural haptic cues. Structured longitudinal training with
vibrotactile feedback may help participants to more confidently
interpret the cues, as was demonstrated in a virtual object task
over a two-week period [17].

In addition, cognitive load was not ideal with respect to the
intact hand within the soft-medium pair. Given that the ultimate
goal is for haptic feedback to return mental effort to levels con-
sonant with healthy hand, fNIRS measures can provide useful
insights as to the best approaches for achieving that goal. For
example, longitudinal fNIRS measures can be utilized to assess
the benefits of training with a particular feedback modality as
it has previously been shown that long-term training reduces
cognitive load due to learning and skill-building [48], [49].
fNIRS measures of cognitive load may also be used to compare
different types of haptic feedback, as other, potentially more
intuitive forms of feedback may incur a lower cognitive load
without requiring any extensive training. Finally, it is possible
to use fNIRS measures as a cognitive load bench-marking tool
for comparing different iterations of the same haptic feedback
device in order to optimize its design and operation.

While this experimental investigation provided insight into
the utility of haptic feedback from both a task performance
and mental effort perspective, there are a few limitations that
should be addressed in future studies. First, while our task was
informative, it was still quite simple. Given that this is the first
investigation with fNIRS into the effect of haptic feedback, we
specifically chose a simple task to avoid task-related confounds.
Second, our results were only confirmed in an able-bodied
participant population. While a mock prosthesis simulates the
experience of a unilateral amputee for testing purposes, vali-
dation of these findings in an amputee population is required
before any translation to clinical practice. Particularly insightful
would be a comparison of the mental effort between a unilateral
amputee’s intact limb and their prosthesis. Finally, since our
fNIRS sensor covering the right lateral prefrontal cortex was
not functioning, we are missing some potentially significant
information. Our fNIRS measures showed that the most signif-
icant differences occurred in the right medial prefrontal cortex.
Future investigations should pay very close attention to this
region.
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Our statistical model indicated a learning effect. Although this
effect was relatively very small compared to the other effects, the
authors are still interested in a future investigation into the longer
term effects of training on cognitive load and performance. It was
also found that fNIRS measures did not indicate significant dif-
ferences between all block pair comparisons. Whether this is due
to the overall sensitivity of fNIRS measures, or the actual nature
of these subtasks is not entirely clear. Nevertheless, our fNIRS
measures were able to differentiate between several difficulty
levels, thereby laying the groundwork for future investigations
into the use of haptic feedback with more complex tasks.

fNIRS as an emerging neuroimaging technique went through
significant methodological development over the previous two
decades [50]. Today, the number of review articles on a wide
spectrum of fields such as cognitive and social sciences, psychol-
ogy, neuroscience, medicine, and neuroengineering testifies to
the maturity achieved by this noninvasive optical neuroimaging
modality. fNIRS has been demonstrated to capture vascular
response related brain activity similar to fMRI but in increas-
ingly miniaturized, portable, wearable form-factor, that can be
battery-operated, wireless and allow participants to be unteth-
ered and ambulatory [43], [51]. fNIRS has been demonstrated to
capture higher PFC activation during increased cognitive load
in diverse array of task domains, including working memory
paradigms [52], [53], decision making [54], attention [55], driv-
ing [56] and flight simulators [57], actual flights conditions [39],
air traffic control and UAV operations [32], and even outdoor
navigation [58] and wheelchair control [59].

As the fNIRS neuroimaging technique further develops, uti-
lization in neuroergonomic assessment of prosthetics and other
human–machine interfaces are expected to expand. As a final
thought, it is worth considering that the approach employed in
this work can be adapted into broader contexts within human-
in-the-loop systems to identify the tasks, which carry high
cognitive load. Furthermore, researchers can seek to minimize
this quantifiable measure of cognitive load in order to reduce
mental burdens on the user, thereby optimizing the system as a
whole. It is also possible to use fNIRS to adapt the system to the
user’s mental state. For example, Yuksel et al. implemented a
brain-adaptive piano training system, where the difficulty level
was increased in response to the user’s decreased cognitive load
in real-time. This resulted in higher accuracy and speed over
the nonadaptive control condition [60]. A similar approach may
be used in prostheses, where the operation of the prosthesis is
modified in real-time based on the user’s level of mental fatigue;
for example, enabling automatic grasp-modifications algorithms
in response to increased cognitive load, or turning off haptic
feedback when cognitive load is low.

V. CONCLUSION

In this study, we compared mental effort and performance in
a stiffness discrimination task for the intact hand, standard myo-
electric prosthesis, and myoelectric prosthesis with vibrotactile
feedback. Results indicated that performance and mental effort
improved with vibrotactile feedback over the clinical standard,

for especially difficult subtasks. In this simple experiment, we
clearly show the reliability of fNIRS to accurately determine the
most difficult subtask in a routine and determine how cognitive
load compares across conditions within that task. In addition,
this study lays the groundwork for future investigations into
neurophysiological assessment of haptic devices. Furthermore,
this methodology can be applied to any application, where an
understanding of cognitive load is critical to improving the
human experience in human–robot collaboration scenarios.

Disclosure: fNIR Devices, LLC manufactures the optical
brain imaging instrument and licensed IP and know-how from
Drexel University. Dr. Ayaz was involved in the technology
development and thus offered a minor share in the startup firm
fNIR Devices, LLC.

APPENDIX

H, V, and N indicate the intact hand, vibrotactile ON, and
vibrotactile OFF conditions. MH, SM, and SH indicate the
medium-hard, soft-medium, and soft-hard block combinations.

Fig. 8. Average change in total hemoglobin concentration for each condition
in the left lateral prefrontal cortex. Error bars represent standard error of the
mean. ** indicates p < 0.01.

Fig. 9. Average change in total hemoglobin concentration for each condition
in the left medial prefrontal cortex. Error bars represent standard error of the
mean. * indicates p < 0.05.
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Fig. 10. Average change in total hemoglobin concentration for each condition
in the right medial prefrontal cortex. Error bars represent standard error of the
mean. * indicates p < 0.05, and ** indicates p < 0.01.

Fig. 11. Average change in total hemoglobin concentration for each condition
in the left lateral prefrontal cortex, using only correct trials. Error bars represent
standard error of the mean. * indicates p < 0.05.

Fig. 12. Average change in total hemoglobin concentration for each condition
in the left medial prefrontal cortex, using only correct trials. Error bars represent
standard error of the mean. * indicates p < 0.05.
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