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Abstract—Objective: Most trainees begin learning
robotic minimally invasive surgery by performing inanimate
practice tasks with clinical robots such as the Intuitive
Surgical da Vinci. Expert surgeons are commonly asked to
evaluate these performances using standardized five-point
rating scales, but doing such ratings is time consuming,
tedious, and somewhat subjective. This paper presents an
automatic skill evaluation system that analyzes only the
contact force with the task materials, the broad-bandwidth
accelerations of the robotic instruments and camera, and
the task completion time. Methods: We recruited vV = 38
participants of varying skill in robotic surgery to perform
three trials of peg transfer with a da Vinci Standard robot
instrumented with our Smart Task Board. After calibration,
three individuals rated these trials on five domains of the
Global Evaluative Assessment of Robotic Skill (GEARS)
structured assessment tool, providing ground-truth labels
for regression and classification machine learning algo-
rithms that predict GEARS scores based on the recorded
force, acceleration, and time signals. Results: Both machine
learning approaches produced scores on the reserved
testing sets that were in good to excellent agreement with
the human raters, even when the force information was
not considered. Furthermore, regression predicted GEARS
scores more accurately and efficiently than classification.
Conclusion: A surgeon’s skill at robotic peg transfer can
be reliably rated via regression using features gathered
from force, acceleration, and time sensors external to the
robot. Significance: We expect improved trainee learning
as a result of providing these automatic skill ratings during
inanimate task practice on a surgical robot.
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[. INTRODUCTION

EGINNING with Halsted’s use of the “See One, Do One,

Teach One” philosophy in the first medical residency
program [1], hands-on training has become an important as-
pect of all surgical curricula. While Halsted’s apprenticeship
model flourished for nearly a century, implementation of an
80-hour resident work week [2] and increased emphasis on pa-
tient safety [3] have forced a large portion of psychomotor skill
development to now take place through simulation-based train-
ing outside the operating theater.

For minimally invasive surgery, simulation-based training
must adapt the psychomotor skills a trainee has developed for
traditional open surgery to a new surgical landscape in which
long thin surgical instruments are manipulated through small in-
cisions under the guidance of a lighted scope. The Fundamentals
of Laparoscopic Surgery (FLS) curriculum helps train surgeons
for laparoscopic procedures. However, no standardized train-
ing curriculum exists yet for robotic minimally invasive surgery
(RMIS), which is commonly used in urologic surgery [4], gyne-
cologic surgery [5], and general surgery [6]. Despite enhanced
visualization and increased dexterity [7], [8], the lack of haptic
feedback in RMIS requires trainees to learn to rely more heavily
on vision [9].

Recent efforts such as the Fundamentals of Robotic Surgery
(FRS) [10] are developing standardized training protocols for
the Intuitive Surgical da Vinci RMIS system; the FRS em-
ploys simulation-based training in the form of virtual reality
(VR) training, structured inanimate task training with the clin-
ical robot, and ex vivo animal model training with the clinical
robot. VR training has been shown to correlate well with inan-
imate and in vivo training [11], and it has some advantages
over the other two methods: VR trainers are less expensive
than the clinical robot, require no disposable resources, have
no clinical scheduling constraints, and allow for structured task
practice in a low-stakes controlled environment [3], [12]. Still,
VR trainers are capable of delivering only a virtual approxi-
mation of the clinical robot and the task materials, which may
not exactly match how the real system behaves. For example,
robotic surgeons are known to compensate for the dynamics of
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the robot hand controllers [13], [14]; desktop systems such as
the dV-Trainer (Mimic Technologies Inc., Seattle, WA, USA)
have control interface dynamics that are different from those of
the clinical robot. In addition, while these trainers have face,
content, construct, and concurrent validity [3], [12], predic-
tive validity has been shown only for specific simulators with
respect to completion time for in vivo animal model training
[15], completion time and number of instrument movements for
inanimate task training [16], and bimanual dexterity, efficiency,
and instrument plus camera awareness for extremely novice
trainees with ex vivo tissue [17].

Although it may be difficult at hospitals where all robots see
high clinical use, training with a clinical robot is still consid-
ered the gold standard [11], [12]. Structured inanimate tasks are
well suited for teaching many of the fundamental psychomotor
skills such as camera movement, tool manipulation, and needle
handling, and they have been shown to correlate more highly
with in vivo training than VR training [11]. In vivo training, on
the other hand, is more suited for practicing surgical procedu-
ral technique [11]. In both cases, the current method for skill
evaluation is structured human grading, in which an expert ob-
server watches the live or recorded training and provides oral
or written feedback to the trainee. Although expert evaluation
is key to the training process, it can be subjective, tedious, time
consuming, and cost ineffective (as most expert raters are prac-
ticing physicians). While crowdsourcing the rating process was
recently shown to be a viable alternative to expert ratings [18],
its adoption in clinical settings has been limited.

Considerable research has analyzed surgical instrument mo-
tions to provide automatic objective feedback to a trainee prac-
ticing on the clinical robot. In particular, researchers have
worked to decode the motion language of surgery at both the
task level and the motion segment level [19]. These approaches
originated with open and laparoscopic surgery [20]-[23] but
have found their way into robotic surgery due to the copious
data available from the robot. For example, Lin et al. developed
a technique for parsing raw motion data from a four-throw su-
turing task performed on a da Vinci surgical robot into a labeled
sequence of surgical gestures for skill evaluation [24]. Simi-
larly, Ahmidi er al. worked to detect surgical gestures and skill
based on descriptive curve coding and a common string model
classification approach [25].

One benefit of these motion-based approaches is that they re-
quire access only to the robot kinematics, so they can be used to
assess skill during both training and actual surgical procedures.
At the same time, their basis on the robot’s motions (measured
by internal joint position sensors) means they cannot account for
potential master—slave misalignments due to sensor error [26] or
for unmeasured quantities such as compliance and mechanical
wear in the surgical tools. They are also blind to the exertion of
large forces or the occurrence of rough contacts with the task
materials. Therefore, motion analysis cannot completely de-
scribe the robot’s physical interactions. In an effort to overcome
this limitation, researchers have begun performing motion anal-
ysis from the video stream from the robotic camera [27], [28].
These approaches, however, lag significantly behind traditional
motion-based assessment due to the complexity of analyzing
6-D motion from a 2-D video.

As a complementary approach to motion-based skill assess-
ment, we propose to use the physical interactions between the
robotic tools and the training environment as a basis for skill
evaluation, irrespective of the robot’s motions. In support of
this strategy, we previously showed that the root mean square
(RMS) and/or total sum of squares (TSS) of both the high-
frequency vibrations of the robotic surgical instruments and the
forces exerted on the task materials are significantly greater
for novices than for experts during peg transfer, needle pass-
ing, and suturing tasks [29], [30]. Tool vibrations and contact
forces are thus construct-valid measures of RMIS skill. This
result is consistent with a broad set of findings that physical
interaction signals are important for assessing skill in endovas-
cular catheterization [31], endoscopic sinus surgery [32], natural
orifice translumenal endoscopic surgery [33], and laparoscopic
surgery [34]-[36].

Despite this wealth of published evidence in related areas, few
researchers have measured the physical interactions between the
robot and the surgical environment when analyzing trainee skill
development. The lack of haptic feedback in robotic surgery
makes such investigations especially interesting and important.
In particular, we believe the rich physical interactions that occur
when a trainee brings the robot’s tools into contact with the
surgical environment can potentially indicate his or her skill
across a range of domains. It may even be possible to predict
skill metrics defined by a validated assessment tool like the
Global Evaluative Assessment of Robotic Skill (GEARS) [37].

This paper reports a new technique that uses external sensors
to measure the robot’s physical interactions and automatically
evaluate a trainee’s technical skill at an inanimate task. We
employ a supervised machine learning approach that predicts
GEARS scores from the forces applied to the task materials, the
broad-bandwidth accelerations of the surgical instruments and
the camera, and completion time. We demonstrate our technique
through application to robotic peg transfer. In what follows, we
describe the details of the data collection apparatus, the hu-
man subject data collection procedures, and the development
and evaluation of machine learning algorithms that automati-
cally predict skill. We end by discussing the implications of this
new approach and areas of future research. Interested readers
can find more information about our system design, task selec-
tion, feature calculation, and data analysis in the supplemental
document associated with this paper.

Il. DATA COLLECTION

The first step in creating an automatic skill assessment tool
for robotic surgery training is to record a dataset of tasks per-
formed by surgeons at a wide range of skill levels. Specifically,
we sought to capture the physical interactions between the sur-
gical robot and the training task. This section details the custom
hardware and the calculations needed to record and process the
surgical task performance data. We then discuss the study that
was conducted to obtain the data.

A. Hardware

We have developed a Smart Task Board (STB) to record
the physical interaction data from the patient-side manipulators
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TABLE |
PARTICIPANT DEMOGRAPHICS
'
y / Handedness Left Right Ambidextrous
/ 3 32 3
Familiaritywith Robot ~ None  Limited Moderate Extensive
13 10 6 9
& # Robotic None 1-100 101-500 501 +
. Cases 22 6 7 3
v Three-axis
: Accelerometer
General (12%) ENT (16%)

Accelerometer ¥
Clip

Fig. 1. Accelerometer clips consist of a custom 3-D-printed bracket
that snaps onto the instrument or camera shaft, plus a three-axis ac-
celerometer mounted to a custom circuit board.

Force Sensor

Fig. 2. Task platform with dowel pins and magnets for task board
mounting, as well as a force sensor for measuring the forces that the
surgeon applies to the task materials through the patient-side manipu-
lators. The coordinate frame shows the orientation of the force sensor’s
axes.

of an Intuitive da Vinci surgical system. The STB consists of
accelerometer clips for the two primary robotic arms, an ac-
celerometer clip for the robotic camera arm, a task platform
containing a three-axis force sensor, a custom signal condition-
ing box, and an Intel NUC computer for data acquisition.

The accelerometer clips are custom 3-D-printed brackets
that snap onto the 8-mm instrument shafts and the 12-mm
camera shaft. Each bracket contains a broad-bandwidth three-
axis  microelectromechanical-system-based  accelerometer
(LIS344ALH) mounted to a custom accelerometer circuit
board, as shown in Fig. 1.

The task platform is a custom acrylic base that fits in the
bottom of the white da Vinci skills dome. A raised platform is
mounted on top of a three-axis force sensor (ATI Mini40 SI-40-
2) at the center of the acrylic base. The top plate of the platform
features dowel pins and magnets to ensure the task materials are
mounted to the plate in a repeatable manner (see Fig. 2). The
Mini40 signal conditioning box is inside an enclosure with a
custom data acquisition board that features a Teensy 3.1 micro-
controller with a 32-bit ARM Cortex microprocessor, as well
as other chipsets for filtering, buffering, and analog-to-digital
conversion.

Cardiac (8%)

Urolgynecology (8%)
Oral & Maxofacial (4%)

Gastrointestinal (8%)
Thoracic (4%)

Urology (40%)

Fig. 3.  Surgical specialty of resident, fellow, and attending participants

The nine single-ended analog inputs for the three three-axis
accelerometers and the six differential analog inputs for the force
sensor are sampled at 3 kHz and written to disk on the Intel NUC
computer. In addition to recording the sensor data, the computer
also records the live video feed from one of the robot cameras
via an s-video connection. The entire data recording process is
controlled through a Python script that zeros the force sensor
before recording data. The user starts and stops the recording
process using a foot pedal, so that he or she can already be
holding the da Vinci masters when the trial starts. A strip of five
lights mounted above the robot view port indicates the current
recording status to the user.

B. Human Subject Study

We conducted a study to collect a large corpus of surgical
skill performance data. The study was designed to capture per-
formance metrics in five of the six domains measured by the
GEARS evaluation tool [37]: Depth Perception, Bimanual Dex-
terity, Efficiency, Force Sensitivity, and Robotic Control. We
omitted the GEARS domain on Autonomy because all partici-
pants were able to complete the task without verbal prompting.
Participants were compensated for their participation with a $25
gift card. All study procedures were approved by the Univer-
sity of Pennsylvania Institutional Review Board under protocol
#820759.

1) Participants: We tested N = 38 participants (22
males, 16 females, mean age of 31.5 4+ 7.2 years) from a
broad range of training levels, including 13 fourth-year med-
ical students in the Agnew Surgical Society at the University of
Pennsylvania Perelman Medical School, 14 surgical residents,
four surgical fellows, and seven attending surgeons. Table I
lists details of our participant population, and Fig. 3 shows the
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(a) (b)

Fig. 4. (a) Peg transfer task and (b) practice task used to help familiar-
ize participants with the da Vinci Standard robot platform.

Fig. 5. Study setup. da Vinci patient-side cart with arms docked in the
skills model shell according to a standard pelvic anatomy. The participant
sits at the da Vinci master console to perform the task.

surgical specialties across our resident, fellow, and attending
participants.

2) Experimental Setup: The study took place in the Uni-
versity of Pennsylvania’s General Robotics, Automation, Sens-
ing, and Perception Laboratory on a da Vinci Standard surgical
system augmented with our STB data collection system. Partici-
pants used the da Vinci to perform the peg transfer task described
below.

Peg transfer: Six triangular objects are placed on the
left side of a pegboard. The participant picks up each object
with their left tool, transfers the object midair to their right
tool, and places the object on a peg on the right side of the
board, as shown in Fig. 4(a). After transferring all six objects,
the participant returns the objects to the pegs on the left side of
the board by reversing the process. Participants were instructed
to retrieve objects that fell on the taskboard with the tool from
which it fell. If an object fell off the taskboard, participants were
instructed not to try to retrieve it. Peg transfer was completed
with two 8-mm-diameter EndoWrist Maryland Bipolar Forceps
tools. This relatively simple task was adopted from the FLS
manual skills test [38] and conducted in the da Vinci skills
model shell (see Fig. 5).

3) Experimental Procedure: After giving informed
consent, each participant sat at the da Vinci master console
as shown in Fig. 5. The experimenter explained the da Vinci
Standard system, including adjusting the ergonomics, focusing
the camera, and clutching the tools and camera. Next, partici-
pants spent at least three minutes doing a warm-up task that fea-
tured four elevated podiums and two rubber objects that could
be moved from one podium to another, as shown in Fig. 4(b).
This practice time was required for all participants including

experienced robotic surgeons because clutching is controlled
somewhat differently between different da Vinci models.

After completing the practice session, the participant was
shown how to operate the data recording system using the foot
pedal and the light strip. Participants then viewed static images
depicting the peg transfer task procedure and were instructed to
complete it as well as possible. Participants were informed that
the task was timed. Before the participant began the task, the
tools were reloaded to reset their configuration, and the camera
was adjusted to give a global view of the task board and the
tool tips. The participant completed the peg transfer task three
times, with the tools and camera reset after each repetition,
and then completed two additional tasks that we will analyze
in future work, followed by a demographic questionnaire. The
entire testing session lasted about 60 min.

[ll. DATA PREPARATION

We obtained accurate skill-level ratings (labels) for the
recorded peg transfer trials, and we extracted a collection of
discrete features from the time-series data. The steps described
below use data from only 37 participants because all three trials
from one participant (a fourth-year medical student) were cor-
rupted while being saved. In addition, one trial from a separate
participant (an experienced robotic surgeon) was not included
because the robot encountered an error that forced a restart, and
the participant was not able to repeat the trial due to time con-
straints. Thus, instead of 114 trials (three trials for each of the
38 participants), our data preparation was performed on the 110
trials that remained.

A. Surgical Skill Rating

We used the GEARS assessment tool [37] to obtain skill rat-
ings for each recorded trial. Two expert robotic surgeons (>300
cases) with prior experience as GEARS raters were recruited
to serve as raters: One is a urologic surgeon, and the other is a
bariatric surgeon, both at the University of Pennsylvania Health
System. One of the experimenters also served as a nonexpert
rater.

Video rating took place using secure web-based surveys ad-
ministered through Qualtrics. Each survey was eight to ten pages
in length, with each page containing the embedded video from
a unique de-identified trial along with the associated GEARS
questions, which are rated on a five-point scale from 1 (low-
est) to 5 (highest). Each survey contained a random selection of
trials presented in random order. The raters never received any
information about the subjects when performing the ratings.

To ensure good interrater reliability, the expert surgeon raters
went through a calibration procedure. Each rater was given
the same set of ten diverse videos to rate. Afterward, the raters
met to discuss their ratings, giving special attention to the
questions where their ratings differed by more than one point.
In this manner, the raters were able to establish what level of
observed performance corresponded to each rating. After this
calibration, the expert surgeon raters rated a new set of ten
diverse videos. The interrater reliability of these ratings was
assessed using the intra-class correlation coefficient (ICC) [39].
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TABLE I 40
FREQUENCIES OF GEARS RATINGS AVERAGED ACROSS RATERS AND Roll @ (deg)
ROUNDED, AND FINAL ICC FOR RATED TRIALS 5
-60
GEARS Domain Ratings ICC
Pitch © (deg)
1 2 3 4 5 _140
0 15 30 45 60 75
Depth Perception 0 14 45 41 10 076 Time (s)
Bimanual Dexterity 0 9 41 44 16 0.80 . . . .
Efficiency 3 14 44 30 19 0.89 Fig.7. These tilt angle signals were computed using the accelerometer
Force Sensitivity 0 15 42 43 10 0.74 signals of the right tool.
Robotic Control 2 10 48 42 8 0.80
Overall 0.88
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Fig. 6. These raw haptic signals were recorded by our system while

one participant performed one trial of the peg transfer task. The top three
traces are the X, Y, and Z components of the force signal. The bottom
three traces are the X, Y, and Z components of the acceleration of the
right tool. All three axes of the force signal show when the participant
exerted force on the pegboard. Likewise, all three axes of the acceleration
signal show when the right tool makes a hard contact with the other tool
or the pegs on the pegboard; the DC acceleration values also show the
tool’'s orientation relative to gravity.

ICC was calculated for each of the five GEARS questions, as
well as overall. A value of 0.6 was chosen as the minimum
acceptable ICC for “good” reliability. For any question with
an ICC below 0.6, the raters reconvened to discuss possible
discrepancies and update their ratings as appropriate. Once the
ICC was above 0.6, the calibration was complete. The nonexpert
rater conducted a similar calibration by comparing his or her
ratings against the calibrated ratings by the expert surgeon
raters. Table II shows the frequencies of the rounded average
ratings produced by our three raters, as well as the ICC for all
ratings for each domain and the overall summed GEARS score.

B. Feature Extraction

Our time-series data consisted of one three-axis force signal
and three three-axis accelerometer signals. Fig. 6 shows the
raw force signals and the accelerations of the right tool from

one representative peg transfer trial. To develop a machine
learning algorithm based on our surgical skill performance
data, we broke this time-series data into a set of discrete
features that describe the data. The readings from each of these
accelerometers respond to two types of stimuli: the shaft’s
high-frequency vibrations, which mainly stem from contact
with stiff objects, and the shaft’s orientation relative to gravity
[40]. We considered these sources to be potentially useful
signals given results from our own vibration-based research
[29], [30] and other motion-based assessments [24], [25].

To compute the angular tilt (roll and pitch) of both tools
and the camera, we first downsampled the associated three-axis
acceleration signal to 100 Hz using the decimate function in
MATLAB, which guards against aliasing, and we then low-pass
filtered it using an eighth-order Butterworth infinite impulse
response (IIR) filter with a 1-Hz cutoff frequency. These filter-
ing steps largely eliminate contact vibrations and translational
accelerations, leaving only a measure of the downward force
of gravity. The sensor’s roll (¢, rotation around the shaft) and
pitch (6, shaft angle relative to the horizontal) were computed
according to the following equations:

¢ = tan! (afy) )

Qfy

—Qfx

/42 2
a’fy + a’fz

where agy, ary, and ag, are the downsampled and filtered x-axis,
y-axis, and z-axis components of the acceleration vector. To
account for potential nonunique solutions originating from the
periodicity of the tangent function, we used MATLAB’s two-
argument inverse tangent function atan2 for all calculations. The
resulting roll and pitch signals were then filtered using the same
Butterworth IIR low-pass filter for additional smoothing. Fig. 7
shows an example of the roll and pitch signals of the right tool
from one representative peg transfer trial. Note that we could not
estimate the shaft’s yaw angle because the measured direction
of the gravity vector does not depend on this angle. Finally, we
calculated the roll and pitch angle rates (velocities) over time as
the difference in the respective orientation at pairs of successive
time steps.

To process the acceleration data, the three-axis signals from
each accelerometer were first mapped onto a single axis us-
ing the DFT321 algorithm [41]; the new signal preserves
the spectral and temporal properties of the three-axis signals.
The combined accelerometer signals were then segmented into

6 = tan!

@

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 28,2020 at 12:39:06 UTC from IEEE Xplore. Restrictions apply.



2268

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 9, SEPTEMBER 2017

low-, medium-, and high-frequency bands using a Butterworth
IIR low-pass filter with a 30-Hz stopband frequency, a 20-Hz
passband frequency, a 65-dB stopband attentuation, and a 0.5-dB
passband ripple; a Chebyshev type 1 eighth-order IR bandpass
filter with passband frequencies of 20 and 100 Hz and 0.1-dB
passband ripple; and a Butterworth IIR high-pass filter with
a 90-Hz stopband frequency, a 100-Hz passband frequency, a
65-dB stopband attenuation, and a 0.5-dB passband ripple.

1) Time Features: For each trial, we recorded the time
elapsed from when the participant pressed the pedal to start data
recording to the moment they pressed the pedal again to stop data
recording. While some participants started the task immediately
after the pedal press, many participants spent a few seconds
adjusting the robot before beginning the task. Likewise, there
were often a few seconds between when the participant finished
the task and when he or she pressed the pedal to stop recording.
Therefore, we also calculated the active trial completion time,
defined as the difference between the last and first time the task
board was touched (using a threshold of 0.25 N on the force
magnitude). In addition, we calculated the square root and log
of both the total completion time and the active completion time
to account for the fact that relationships between skill and time
may be nonlinear. The total number of time features was six.

2) Descriptive Features: For each trial, we computed
the eight values of mean, standard deviation, minimum, maxi-
mum, range, RMS, TSS, and time integral of each of the fol-
lowing signals:

1) force in -, y-, and z-directions (3 signals, 24 features);

2) force vector magnitude (one signal, eight features);

3) right tool, left tool, and camera roll and pitch angles (six

signals, 48 features);

4) right tool, left tool, and camera roll and pitch angular

velocities (six signals, 48 features);

5) right tool, left tool, and camera acceleration in each fre-

quency band' (nine signals, 72 features);

6) product of right and left tool acceleration in each fre-

quency band' (three signals, 24 features);

7) product of force magnitude and right tool acceleration in

each frequency band' (three signals, 24 features);

8) product of force magnitude and left tool acceleration in

each frequency band! (three signals, 24 features).
The product signals highlight when two items contact one
another. The total number of descriptive features was 272.

IV. MACHINE LEARNING ALGORITHM DEVELOPMENT

The final step in developing an automatic assessment tool for
rating surgical skill is to train machine learning models to rec-
ognize patterns between the features and the ratings. Because
GEARS scores are ordinal in nature, they can be treated as cat-
egories or as real-valued scores, suggesting both classification
and regression approaches. This section explains how we trained
our regression-based learners and classification-based learners
to predict GEARS scores. For both, we created a testing set by
reserving the trials from four participants who were randomly

I'To avoid values near zero, the absolute value of the acceleration signal was
used to calculate the mean of these signals.

selected from the four groups of participants representing dif-
ferent reported familiarity levels with the da Vinci system. We
then used the remaining 33 participants as a training set. Given
that all participants completed the same number of trials except
for one expert, this training/test split is close to the 90%/10%
training/test split common in the machine learning literature.
We trained and tested each learning model five times on a dif-
ferent training/test split to help account for the uneven distribu-
tion of ratings in our data. Since the GEARS ratings are integer
values from 1 to 5, the rounded average rating between the three
human raters was used for training.

A. Regression Learner

Before training our regression-based learner, we performed
feature selection on our set of 278 features using stepwise regres-
sion, a search method that iteratively adds features to an initially
empty model until it finds the model with the local minimum
error, using an L, penalty. Feature selection was performed sep-
arately for each of the five GEARS domains. We then used
leave-one-out cross-validation for model tuning and selection.
Rather than using one specific regression technique, we trained
an ensemble learner, which was composed of support vector re-
gression [42], elastic net regression [43], regression trees [44],
and K nearest neighbors [45]. The final model predictions are
then an average of the predictions from each model. A sepa-
rate ensemble learner was trained for each of the five GEARS
domains. All regression learners were computed in MATLAB
using the LIBSVM library [46], the Glmnet library [47], and the
Statistics and Machine Learning Toolbox.

B. Classification Learner

We used a random forest classification learner [48], building
a separate classifier for each of the five GEARS domains.
Each classifier had 500 trees with a minimum leaf size of
25 for the Depth Perception, Bimanual Dexterity, and Force
Sensitivity GEARS domains, and a minimum leaf size of 15
for the Efficiency and Robotic Control GEARS domains. The
minimum leaf size was determined as the number of leaves that
produced the smallest out-of-bag error, and for which additional
leaves did not lower that error. The classification learner was
built using the TreeBagger function in MATLAB’s Statistics
and Machine Learning Toolbox. We set the prior probabilities of
each class to “empirical,” which determined class probabilities
based on the frequencies of classes in our training data. We set
the cost matrix to be the squared error between ratings.

Because the Random Forest learner uses a bagging method to
randomly sample the set of features for every tree built, feature
importance is determined during model training using the out-
of-bag error. We saved the importance of each feature and used
only the 30 top features in each domain’s final model.

V. RESULTS

Both the regression learners and the classification learn-
ers produced meaningful automatic ratings on all five tested
GEARS domains. The training and testing were performed on
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Fig.8. Percentage of each type of feature (columns) that was important
for each GEARS domain (rows) for the regression learner (top) and the
classification learner (bottom).

a Mac OS X computer with a 2.8-GHz Intel i5 processor and
16 GB of RAM. On this machine, calculating the features for
all 110 trials took approximately 18 min, training the five re-
gression learners took approximately 22 s for all five GEARS
domains, and training the five classification learners took ap-
proximately 33 min. Calculating all features and five ratings for
a single task took approximately 11 s for regression learners and
18 s for the classification learners. The most important features
for each GEARS domain differed between the two learners, as
shown in Fig. 8.

All results reported below were obtained through analysis of
the reserved testing sets, which were never seen during training.
We evaluate the performance of each learner by 1) the accuracy
with which it predicts the GEARS ratings given by our raters
and 2) the interrater reliability between the automatic GEARS
ratings and the GEARS ratings produced by our raters. We
also analyze the performance of the learners after they were
retrained without any force-based features, as the force sensor
cannot be used during in vivo practice; a complete list of these
findings can be found in Section IV-A of the online supplemental
material.

A. Prediction Accuracy

We used the developed regression and classification learners
to predict the five GEARS ratings for all trials by the four

Depth Perception
Sk =
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3+ + ) & ® ® & X
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1 .
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4+ * + X + + ] o ® + +
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Robotic Control
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3+ =4 ® =4 ® B =4 + +
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1 2 3 4 5 6 7 8 9 10 11 12

O Human Ratings X Regression Predictions + Classification Predictions

Fig. 9. Regression and classification learner predictions for all five
GEARS domains for a representative testing set. Blue circles are the
actual ratings from the human raters. Red x’s are the average rounded
predictions of the regression learner. Green +'s are the predictions of

the Classification learner. The predictions are plotted for every ftrial in
the testing set (1-12) in terms of increasing score (1-5).

TABLE IlI
EXACT ACCURACY ACROSS TESTING SETS

GEARS Domain Regression Learner  Classification Learner

Depth Perception 63.3£9.5% 71.7£9.5%
Bimanual Dexterity 66.7 £ 11.8% 533 +£162%
Efficiency 73.3 £ 16.0% 583 +£8.3%
Force Sensitivity 63.3+9.5% 51.7 £ 10.9%
Robotic Control 71.7 £ 12.6% 75.0 + 15.6%

Values shown are mean =+ standard deviation across the five testing sets.

participants in each of the five reserved testing sets. Since the
GEARS ratings are integer values from 1 to 5, we rounded the
prediction from our regression learner, and we compared the
predictions from both learners to the rounded average rating
between the three human raters. Fig. 9 shows the resulting
predictions for one of the reserved test sets.

1) Exact Accuracy: On average, our classification
learner and our regression learner were moderately accurate
at predicting the exact ratings produced by the human raters.
Table III shows the overall (mean =+ standard deviation) accu-
racy for predicting the exact rating in each of the five GEARS
domains for both learners across the five test sets. The accu-
racy for both the regression and classification learner was above
50% for all five GEARS domains, and the regression learner
had a higher exact accuracy than the classification learner for
all domains except Depth Perception and Robotic Control. The
highest accuracy was for the classification learner in the Robotic
Control domain (75.0%). The lowest accuracy was for the
classification learner in the Force Sensitivity domain (51.7%).
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TABLE IV
PRECISION AND RECALL FOR REGRESSION AND CLASSIFICATION

Precision
GEARS Domain All Ratings Rating = 2 Rating = 3 Rating = 4 Rating =5
Depth Perception (Regression) 047+037 030+045 059+0.15 0.70£0.15 0.25+0.50
Bimanual Dexterity (Regression) 0.53 +0.38 0 0.58+0.12 0.65+0.18 0.80 £0.45
Efficiency (Regression) 0.64 + 0.36 0 0.73+0.25 0.66+0.20 0.90 £ 0.22
tp Force Sensitivity (Regression) 043+0.39 040+055 044+020 0.77 +0.08 0
(t T ) Robotic Control (Regression) 047 +£040 033+058 080+0.15 0.61+0.22 0
p1p Depth Perception  (Classification)  0.40 + 0.40 0 0.75+025 0.69+0.16 0
Bimanual Dexterity ~ (Classification)  0.28 £ 0.30 0 0.52£0.19 0.55+£0.20 0
Efficiency (Classification)  0.50 4 0.38 0 0.60 £037 0.53+0.14 0.87£0.18
Force Sensitivity (Classification)  0.26 £+ 0.28 0 0.37+0.12  0.62 +0.09 0
Robotic Control (Classification)  0.44 +0.43 0 0.89 £0.15 0.62 +0.27 0
Recall
GEARS Domain All Ratings Rating = 2 Rating = 3 Rating = 4 Rating =5
Depth Perception (Regression) 0.56 +£0.38 030+045 0.76+0.15 0.74+0.10 0.33+0.58
Bimanual Dexterity (Regression) 0.55+£0.38 0 0.68£021 0.79=£0.13 0.60£0.43
Efficiency (Regression) 0.65 + 0.36 0 0.86 +£0.13 0.80+0.28 0.68 +0.21
tp Force Sensitivity (Regression) 045+041 0.10+£0.14 071 £0.21 0.89£0.10 0
(tp T fn) Robotic Control (Regression) 055+044 033+058 092+0.12 0.75+0.19 0
Depth Perception (Classification)  0.48 £+ 0.47 0 0.74 +£0.20  1.00 £+ 0.00 0
Bimanual Dexterity ~ (Classification)  0.38 = 0.41 0 0.624+0.32 0.83+£0.13 0
Efficiency (Classification)  0.54 +0.33 0 045+£0.08 0.72+£023 0.78£0.22
Force Sensitivity (Classification)  0.37 £ 0.40 0 0.61 2024 0.81 +£0.20 0
Robotic Control (Classification)  0.51 £+ 0.47 0 0.924+0.12 0.82 +£0.29 0

tp is the true positive result, fp is the false positive result, and fn is the false negative result. Values shown are mean =+ standard deviation across the five
testing sets for all ratings. Note that each value reported here is the mean of the individual scores, so the mathematical relationship between precision
and recall does not necessarily follow the equations given. Note also that the training set contained significantly fewer examples of the ratings two and
five than three and four. Furthermore, none of the five testing sets contained a rating of one, so the associated precision and recall scores have not been

computed.

The exact accuracy for each learner in each domain was above
the 20% expected for pure guessing with a uniform prior or the
~40% expected for always guessing the most common rating.

When the learners were retrained without the force-based
features, there were only marginal differences (< +5%) in the
average exact accuracy for both learners for all domains except
for the regression learner in the Force Sensitivity domain, which
decreased by 16.6%.

2) Prediction and Recall: In addition to the exact ac-
curacy for the regression and classification learners, we also
assessed the precision and recall score. Table IV reports these
scores for the regression and classification learners averaged
over all GEARS ratings (2-5, as there were no 1’s in the test
sets) as well as for each individual rating, averaged over all five
test sets for each GEARS domain. When averaged together for
all ratings, both learners produced precision scores above 0.2,
indicating that performance was better than chance. In addition,
the regression learner produced a higher precision and recall
score than the classification learner for every GEARS domain.
For the regression learner, in terms of individual ratings, the
highest precision score was for Efficiency for a rating of five
(0.90), and the highest recall score was for Robotic Control for
arating of three (0.92). For the classification learner, the highest
precision score was for Robotic Control for a rating of three
(0.89), and the highest recall score was for Depth Perception
for a rating of four (1.0). Note that for all domains, the training

set contained significantly fewer positive examples of ratings of
two and five than three and four.

When the learners were retrained without the force-based
features, there were only marginal changes (< +0.1) in the
precision and recall scores for both the learners when averaged
together for all ratings, except for the regression learner in the
Force Sensitivity domain, which decreased by 0.16 for precision.

B. Interrater Reliability of Learners

While the prediction accuracy explains how well each learner
replicates the labels produced by the human raters, our ultimate
goal is to use these machine learning techniques independent
of a human rater. We, therefore, need to evaluate how well
each learner would perform as an independent rater. As with
our human raters (see Section III-A), we evaluated the interrater
reliability of our learners using the two-way random-effect ICC.
Table V shows the range of ICC values from our five testing
sets for each of the individual GEARS domains, as well as
the overall summed GEARS score. The ICC values reported
in Table V quantify the reliability of the ratings based on the
average ratings of all three raters and the respective learner.
The median and upper range ICC values for both learners are in
“excellent” agreement (ICC > 0.75) with the human raters for all
five GEARS domains and overall. The lower ICC values are all
in “good” agreement (ICC > 0.6) or better with the human raters.
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TABLE V
RANGE (MEDIAN) OF ICC(2,4) BETWEEN THE THREE RATERS AND EACH
LEARNER (REGRESSION AND CLASSIFICATION) FOR THE FIVE RESERVED
TESTING SETS

GEARS Regression Classification
Domain Learner Learner
Depth Perception 0.80-0.88 (0.81)  0.76-0.84 (0.83)
Bimanual Dexterity ~ 0.71-0.91 (0.86)  0.71-0.86 (0.84)
Efficiency 0.84-0.93 (0.88)  0.83-0.91 (0.88)

Force Sensitivity
Robotic Control
Overall

0.70-0.90 (0.79)
0.66-0.87 (0.79)
0.88-0.93 (0.89)

0.66-0.84 (0.76)
0.69-0.86 (0.81)
0.87-0.89 (0.89)

When the force-based features were removed, the ICC values
changed only marginally (< £ 0.05). The median and upper
range ICC values for both learners are still in “excellent” agree-
ment for all five GEARS domains and overall. The lower range
ICC values are also still in “good” agreement or better with the
human raters.

VI. DISCUSSION

The presented results demonstrate that skill at robotic peg
transfer can be assessed using only task completion time and
the signals from accelerometers on the two robotic tools and
camera and a force sensor under the task board. GEARS rat-
ings were automatically predicted by machine learning algo-
rithms that were trained with data labeled by human graders.
Both regression and classification approaches were successful
at predicting the human graders’ ratings, but to slightly different
degrees.

The exact accuracies for both learners was significantly above
the performance expected for either random guessing or guess-
ing the most common rating. In addition, the regression learner’s
average precision was above 0.4 for all ratings in all domains,
while the classification learner’s average precision was above
0.4 for all domains except Bimanual Dexterity and Force Sen-
sitivity. Although many of the mean precision values for all
ratings are lower, the precision values for ratings of three and
four are above 0.5 for all domains except Force Sensitivity. The
number of positive examples of a rating in the training set im-
pacts the precision of the machine learning algorithm; as shown
in Table II, most of the ratings for every domain were threes and
fours. Looking at ratings of two and five, it appears classifica-
tion is more negatively impacted by the low number of positive
examples than regression. This trend largely holds true for the
recall results, where the majority of the scores were greater than
0.6 for a rating of three or four.

The regression learner slightly outperformed the classifica-
tion learner with few exceptions. This distinction most likely
stems from the different algorithmic approaches of regression
and classification. Regression treats the GEARS scores of 1-5
as real numbers with a sequentially ordered relationship. For
classification, the GEARS scores of 1-5 are treated as separate
categories with no underlying relationship. Apparently the rela-
tionship between the physical interaction data (tool and camera
accelerations, contact forces, and completion time) and the rated

skill of the participants can be described more accurately with
a linear function than with a categorical algorithm.

While the prediction accuracy findings demonstrate the tech-
nical efficacy of the proposed machine learning approach, the
interrater reliability findings highlight the potential impact this
approach could have on the field of simulation-based surgical
robotic training. The ICC values in Table V calculated across
testing sets show that both the regression and classification learn-
ers are at a minimum in “good” reliability with the human raters,
and at a maximum in “excellent” reliability, suggesting that both
can be treated as independent evaluators. The median ICC value
for both learners was above 0.75 for every GEARS domain and
overall with regression performing slightly better than classi-
fication across the board. The minimum ICC values less than
0.75 for the Bimanual Dexterity, Force Sensitivity, and Robotic
Control domains have more to do with the poor agreement of the
human raters (minimum human ICC ratings of 0.60, 0.56, and
0.43, respectively) than with the machine learning techniques.
Even though we attempted to keep them calibrated, these testing
sets represent a few specific instances where the raters were not
in good calibration with one another.

Given these findings, the regression-based approach appears
to be more suited than classification for learning peg transfer
skill ratings: it achieved better accuracy, precision, and recall;
produced ratings that were reliable with those of the expert
raters; took less time to train; and needs less time to make
a prediction. The longer training and prediction times for the
classification learner come from the higher computational load
of Random Forests. In training these learners, the employed
combination of 500 decision trees and at least 15 leaves pro-
duced the lowest out-of-bag errors, but other combinations may
be possible. While fewer trees or leaves would reduce the com-
putational cost, accuracy would likely also decrease. The regres-
sion learner, on the other hand, was trying to fit a linear model
to the data, which is less computationally demanding.

Although both learners produced good prediction accuracies
and high ICCs, certain domains performed better than others.
Each GEARS domain covers a different aspect of surgical skill,
so we expect that the human raters based each of their ratings on
a particular subset of the behaviors visible in the video. Some
of the features that we calculate from the recorded data, such as
completion time, likely match up well with cues to which the
raters attended, while other important visual cues may not have
been captured sufficiently by our feature set.

It is interesting that the accuracy results were lowest for the
Force Sensitivity domain. This finding may indicate that dif-
ferent features are needed to accurately capture the visual cues
used by the expert raters. At the same time, however, it may
allude to a potential confound of using stiff training tasks for
which visual estimation of force is difficult. There may not be a
universal visual cue that directly relates to Force Sensitivity for
this task, so different raters may have relied on different cues.
This hypothesis is supported by the fact that the human Force
Sensitivity ratings varied more than those in other domains,
achieving a reliability that was slightly less than excellent (0.74,
see Table II). Although this large variability negatively affected
the prediction accuracy of the learners, the ratings they produced
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were still reasonably consistent with those of the human raters,
earning a median ICC that was above 0.75. This discovery opens
up the question of whether giving a human rater access to the
same data recorded by the STB might change the rating he or
she assigns to a trial, particularly for skill domains that are more
difficult to rate visually.

Taken together, our findings have the potential to significantly
impact simulation-based training for RMIS. RMIS is still young
compared to other surgical approaches, but the number and type
of RMIS procedures are growing in many surgical specialties
[4]-[6]. Therefore, many novice surgeons will need to become
proficient in the psychomotor skills needed to safely operate
current and future RMIS platforms. While VR training will
surely continue to play a role in skill development, training on
the clinical robot will remain the gold standard because it pro-
vides the trainee with a real robotic experience, complete with
robot dynamics and physical interactions between the instru-
ments and the training task. In addition, with the advent of a
standardized training curriculum, performance on the clinical
robot will most likely be used for benchmarking purposes in the
same manner in which real laparoscopic tools are used for the
FLS [38].

A downside of clinical robotic training and evaluation, how-
ever, has been that expert human raters are needed to assess
the trainee’s skill level. This evaluation and assessment process
can unfortunately be inefficient, not providing the trainee with
immediate feedback. With the proposed approach, expert evalu-
ators are needed only to provide ground-truth skill ratings for al-
gorithm development. Once trained, however, these algorithms
can automatically rate skill on their own, using a validated as-
sessment tool, much faster than a human rater. As an illustration,
it took our motivated expert surgical raters six months to rate
110 peg transfer trials (among their other clinical, research, and
training responsibilities). Our regression learner could theoret-
ically calculate the features and rate the same number of trials
in approximately 20 min, and it would take our classification
learner about 33 min. Thus, the proposed approach drastically
reduces the time needed to obtain ratings. It can, therefore, pro-
vide trainees with real-time structured feedback, eliminating the
need for expert surgical raters to assess basic psychomotor skill
development.

Another benefit of the proposed approach is that it accounts
for the actual physical interactions between the surgical robot
and the training task, regardless of whether those interactions
take place in the camera’s field of view. This approach is, there-
fore, robust to any master—slave misalignment and compliance
or mechanical wear in the robotic tools, and it does not depend
on robot kinematics or any other knowledge of the surgical
robot. Likewise, our STB system integrates on top of the ex-
isting surgical system and does not interfere with robot control
and operation. Consequently, this approach can be applied to any
surgical system, whether training or clinical, currently available
or still in development. While we have demonstrated the efficacy
of this approach for GEARS, it could be applied to other struc-
tured assessment tools. It could also be used to develop entirely
new validated global assessment metrics, particularly metrics
that account for the physical interactions that are hard to discern

through vision, such as high-frequency tool accelerations and
sustained contact forces.

While the proposed approach has demonstrated that the man-
ner in which a surgeon brings the robot into contact with the
training environment relates to surgical skill, many aspects of
skill and technique are still grounded in the distinct motions pro-
duced through the robot by the surgeon. Indeed, many motion-
based approaches have demonstrated efficacy in evaluating open
and laparoscopic skill [20]-[23] as well as robotic surgical skill
[24], [25]. It would then seem appropriate that these two ap-
proaches should be combined to more holistically evaluate skill.
Motion and physical interaction data have already been com-
bined to assess skill in endovascular catheterization [31], en-
doscopic sinus surgery [32], natural orifice translumenal endo-
scopic surgery [33], and laparoscopic surgery [34], [35]. They
have even been used to assess laproscopic skill according to met-
rics comparable to those used in validated assessment tools [36],
as we did in this study. These studies suggest the potential utility
that exists for combining motion and physical interaction data
for robotic surgical skill assessment.

The combination of motion and physical interaction data
could also potentially contribute to skill assessment in the actual
operating room. While the main results reported in this paper
relied on data from a force sensor mounted beneath the task
materials, we found only marginal reductions in performance
for most domains when the signals from the force sensor were
omitted, as they would need to be for assessment of clinical
skills in vivo; unsurprisingly, the Force Sensitivity ratings were
most affected. We believe the rest of our results were robust
to this omission because instrument vibrations also somewhat
capture the consequences of contact between the tools and the
task materials. The STB accelerometers could be used during
actual surgery if they were sterilized before attachment to the
instruments and camera.

While the results presented in this paper demonstrate the effi-
cacy of skill rating for robotic surgery based solely on physical
interaction data, our claims have some limitations. First and
foremost, we have demonstrated this approach only for the peg
transfer task. Peg transfer is a widely accepted and validated
training task for evaluating basic psychomotor skill. Still, it
lacks the direct clinical relevance of a task like dissection or
suturing. The use of soft tissue-like task materials would most
likely improve the Force Sensitivity domain accuracy results
because their visual deformation would give the raters a more
universal indicator of applied force, potentially decreasing the
variability in their Force Sensitivity ratings.

A second limitation is that we had only two expert surgical
raters and one nonexpert rater. As mentioned previously, the
experts in this study have significant experience both as robotic
surgeons and as surgical graders, and the ICC metric was used
to ensure reliability among all three raters. Still, there remains
an element of subjectivity in the produced ratings. Likewise,
although GEARS is a validated assessment tool, it was designed
with the intent of evaluating surgical skill in the operating room.
Here, we have utilized the universal aspects of the GEARS
framework to assess skill in an inanimate ex vivo task. Given
the good to excellent agreement between each learner and the
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raters both with and without the force sensor, it seems very
likely that the proposed approach would be effective in actual
surgical training and evaluation, even in the operating room.
This hypothesis needs to be tested in an actual training study
for validation, where care should be taken to ensure the ratings
produced by the learners are consistent with those produced
by an human rater. Given that improper assessment with our
approach carries with it the same consequences as for a human
rater, the robustness of the current approach can be enhanced by
training with a larger dataset and a more calibrated set of human
raters.

A third limitation is that only 38 participants took part in the
study, and as a result, not every skill level was equally repre-
sented. The effect of this limitation could be seen in the lower
precision and recall scores for individual ratings of two and
five. This dataset also precluded significant training on ratings
of one for any domain. While even extremely novice partici-
pants scored mostly two and above for this task, neither learner
is capable of accurately rating a trainee with extremely poor
performance.

A fourth limitation is that all experiments were performed on
ada Vinci Standard platform, which is no longer in clinical use in
the U.S. Most of the experienced residents and fellows had prior
experience with newer models of the da Vinci platform, and most
experienced attending surgeons had to refamiliarize themselves
with this older model. However, given that all sensors were
external to the robot, updated algorithms could be developed
for newer da Vinci models or other robotic platforms altogether.

Despite the aforementioned limitations, the approach demon-
strated in this paper is the first automatic skill rating system that
relies on physical interaction between the robot and the training
task, and it achieved excellent predictions on unseen data. We,
therefore, plan to conduct future studies to evaluate the pre-
sented methods on other training tasks, particularly ones that
are more clinically relevant, such as suturing. We believe our
methods will achieve good results even on tasks with softer ma-
terials because novice and experienced subjects will still differ
in how they handle the tools and manipulate objects. Such in-
vestigations may prompt us to extend the methods reported here
with new features and new machine learning approaches. These
studies will ideally involve more participants from a broader
range of skill levels, as well as more raters.

As a complementary approach, unsupervised machine learn-
ing techniques should be considered to allow skill assessment
beyond the limited domains and 1-5 scale of GEARS and other
similar assessments. Likewise, the current STB could be mod-
ified to work with newer robotic systems such as the da Vinci
Xi, and it could include additional sensors on the instrument
and camera shafts, such as gyroscopes and magnetometers. It
would also probably prove worthwhile to integrate the approach
proposed in this paper with motion-based skill assessment ap-
proaches. Finally, the utility of the ratings produced by this ap-
proach should be evaluated in a study aimed at helping novice
trainees improve their skills with a robotic surgery system. We
hypothesize that providing automatic GEARS scores after every
trial will help trainees improve faster than they would with more
common quantitative metrics (akin to the features themselves)
or with no feedback at all.

VIl. CONCLUSION

We created a system that can automatically evaluate a surgi-
cal trainee’s skill at performing the common task of peg transfer
with a robotic minimally invasive surgical system. This smart
task board (STB) rates skill using the GEARS structured assess-
ment tool, which involves 1-5 ratings in five domains. Its ratings
are based on the manner in which the trainee brought the robot
into physical contact with the training task materials, which is
measured using force, acceleration, and time sensors that are
external to the robot. GEARS ratings are then predicted us-
ing custom regression-based and classification-based machine
learning algorithms whose feature set is calculated from signals
produced by the external sensors. Training of both the regres-
sion and classification learners was performed using peg transfer
data from participants of various skill level and was labeled by
two expert robotic surgeons and one nonexpert rater. Both ap-
proaches produced highly accurate and reliable GEARS predic-
tions on unseen data even when the force-based features were
removed. Regression, however, outperformed classification in
terms of both prediction accuracy and computation time, mak-
ing it the superior choice for this particular form of inanimate
task training. This study is the first to demonstrate automatic
skill assessment for RMIS via physical interaction information.
It makes significant progress toward the goal of improved sur-
gical training and evaluation by reducing the need for human
raters to assess basic psychomotor skill development.
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