
  

 

Abstract— In this study, seven able-bodied human subjects 

controlled a robotic gripper with surface electromyography 

(sEMG) activity from the biceps. While subjects controlled the 

gripper, they felt the forces measured by the robotic gripper 

through an exoskeleton fitted on their non-dominant left arm. 

Subjects were instructed to identify objects with the force 

feedback provided by the exoskeleton. While subjects operated 

the robotic gripper, scalp electroencephalography (EEG) and 

functional near infrared spectroscopy (fNIRS) were recorded. 

We developed neural decoders that used scalp EEG to 

reconstruct the sEMG used to control the robotic gripper. The 

neural decoders used a genetic algorithm embedded in a linear 

model with memory to reconstruct the sEMG from a plurality 

of EEG channels. The performance of the decoders, measured 

with Pearson correlation coefficients (median r-value = 0.59, 

maximum r-value = 0.91) was found to be comparable to 

previous studies that reconstructed sEMG linear envelopes 

from neural activity recorded with invasive techniques. These 

results show the feasibility of developing EEG-based neural 

interfaces that in turn could be used to control a robotic device. 

I. INTRODUCTION 

Recent brain machine interface (BMI) research has 
examined the feasibility of decoding surface 
electromyography (sEMG) from neural activity extracted 
with invasive recording techniques [1–4] and noninvasive 
modalities [5], [6]. Decoding sEMG presents an interest in 
the field as it provides a direct application to BMI that uses 
functional electric stimulation (FES) where peripheral 
muscles are stimulated from external electrical signals [1], 
[4]. It also provides a wider repertoire of control schemes that 
can be used to control peripheral hardware where the kinetics 
(such as torque) can be controlled directly with neural 
activity as opposed to controlling the kinematics (such as 
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limb position or joint angle) [1]. There is also a possibility 
that brain activity may be more correlated to muscle activity 
as opposed to limb kinematics, which could lead to more 
reliable control. 

Here we demonstrate the feasibility of reconstructing 
sEMG activity from scalp EEG signals in the delta band (.01 
- 1Hz) with a linear decoder with memory (Wiener filter). 
This strategy is derived from our previous studies, where we 
found reasonable success in predicting limb kinematics from 
delta band EEG activity using linear decoders based on the 
observations that delta band EEG activity is modulated in 
amplitude with kinematics [7–9]. 

In this paper we expand upon our previous work where 
we designed a closed loop prosthetic device that implemented 
force feedback [10]. This device featured a robotic gripper 
that was controlled by the subject's bicep EMG and an 
exoskeleton which provided forces measured by the robotic 
gripper to the subject. The force feedback in the prosthetic 
device was found to significantly improve the subjects' ability 
to discriminate objects of various stiffness [10]. While the 
previous work was primarily aimed to investigate if force 
feedback improved myoelectric prosthesis control, EEG was 
also collected in order to study changes in neural activity due 
to the presence of force feedback. Since the EMG used in the 
prosthesis directly reflected the user’s movement intentions, 
it was of interest to observe if the EEG collected in the study 
could reconstruct the EMG, demonstrating the feasibility in 
operating the robotic gripper with EEG as a BMI. Thus, the 
goals of this study were to develop a neural decoder based on 
scalp EEG to reconstruct the EMG used in the control of the 
robotic gripper and to investigate if the presence of force 
feedback influenced the reconstructions. 

II. METHODS 

A. Instrumentation and Behavioral Task 

Seven healthy able-bodied human subjects participated 
and gave informed consent for the following study. Due to 
technical issues of synchronizing data, the data presented 
herein reflects that of five subjects. The study called for 
subjects to control a robotic gripper through EMG signals 
recorded from the biceps brachii. As the subjects controlled 
the robotic gripper, two single axis load cells (Transducer 
Techniques LSP-1) on the tips of the gripper measured how 
much force was exerted on the gripper due to the gripping 
action. This force was displayed as an extension torque 
through a motorized exoskeleton that was fitted on the 
subject's left arm. As the robotic gripper grasped the object 
with higher forces, the subject experienced a greater 
extension torque about the elbow through the exoskeleton. 
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Fig. 1 shows the robotic gripper and the exoskeleton. Further 
technical details of the closed loop prosthetic device can be 
found in [10]. 

 

Figure 1.  A) Photograph of the robotic gripper that was controlled by the 

subjects in the study. B) Photograph the exoskeleton which provided force 
feedback about the elbow to the subject. 

Subjects were instructed to use the robotic gripper to grasp 
three objects of various stiffnesses that were presented 
randomly. The objects and the gripper were visually hidden 
from the subjects while they performed the behavioral task. 
After the subjects squeezed the objects, they were instructed 
to guess which object was being squeezed. Each object was 
presented 10 times, which resulted in 30 trials. While the 
subjects performed this task, neural activity was recorded 
simultaneously with scalp EEG (Neuroscan Synamps, 64 
channel system) and functional near infrared spectroscopy 
(fNIRs) (Drexel University, 16 sensor strip system). Analysis 
on the fNIRs data will be published elsewhere. 

Four task conditions were applied in this study. In all 
conditions, the exoskeleton was fitted on the left arm. In the 
first and second conditions, bicep EMG from the arm that 
was ipsilateral to the exoskeleton was used to control the 
robotic gripper. The force feedback was present in the first 
condition and removed in the second condition. In the third 
and fourth conditions, bicep EMG from the arm that was 
contralateral to the exoskeleton was used to control the 
robotic gripper. The force feedback was removed in the third 
condition and present in the forth condition. 

B. Data Processing 

Myoelectric control of the robotic gripper: The linear 
envelope of the biceps EMG was used to control the robotic 
gripper. To extract the linear envelope, EMG was rectified 
and low pass filtered with a cutoff at 0.159 Hz. This linear 
envelope was used during the recording session for subjects 
to control the robotic gripper. For the analysis, the linear 
envelope of the EMG was resampled to 100 Hz and 
synchronized with the scalp EEG which was also resampled 
at 100Hz. 

Decoding Surface Electromyography from Scalp 
Electroencephalography: Scalp EEG was preprocessed 
before it was used to reconstruct the linear envelope of bicep 
EMG. First, 13 peripheral EEG sensors that were obstructed 
by the fNIRs sensors were omitted for the rest of the analysis. 
EEG recordings were then common average referenced to 
remove the common noise across all the electrodes. Next the 
EEG signals were high pass filtered at 0.01 Hz with an 8th 
order Butterworth filter to remove drifts in EEG signal 
amplitude across the recording session. While decoding 
studies typically use 0.1 Hz as the high pass cut off 
frequency, we found that using 0.01 Hz allows the decoder to 

perform better. This may occur because EMG envelopes 
contain significant amount of power below 0.1 Hz due to 
very slow muscle contractions. The EEG signals were then 
low pass filtered at 1 Hz with a first order Butterworth filter 
in order to extract the delta band EEG signals and for the 
frequency content of the EEG signals to be similar to that of 
the EMG linear envelope (in the EMG linear envelopes, at 
least 90% of the power in the power spectral density 
estimates were found to be below 1 Hz). From the continuous 
data, trials of EEG and EMG data were extracted from the 
time duration 2 seconds before and 12 seconds after the onset 
of movement. The EEG and EMG signals were then 
resampled at 20 Hz in order to reduce the time needed to 
further process the data while maintaining the frequency 
content of the signals. The amplitude of the EEG and EMG 
signals were then standardized with respect to their means. 

The neural decoder used a linear model (Weiner filter) to 
reconstruct the linear envelope of the EMG activity. The 
amplitude of the EMG linear envelope was approximated as 
the weighted sum of the signals of the preprocessed EEG 
signals. In addition, EEG signals from the past are also added 
into the approximation. The following equation illustrates 
this relationship: 

  ( )   ∑ ∑       (   )
 
   

 
    (1) 

where Y(t) is the amplitude of the EMG linear envelope at 

time t, Si(t-k) is the amplitude of the EEG signal from the i-

th electrode (up to N=49 sensors were included) at time t - k, 

k is the time lag in the past (N=6 lags from 0 to 250 

milliseconds in 50 millisecond increments were used), and 

bik are the coefficients of the linear model. These coefficients 

were determined by fitting a generalized linear model with 

the MATLAB glmfit function. 

 
The model was trained and validated using leave-one-out 

(LOO) cross validation. In this scheme, all but one trial was 
used to train the model.  For the trial that remained, the EEG 
signals were used to reconstruct the EMG based on the model 
which was trained with the other trials. The reconstructed 
EMG was low pass filtered at 1 Hz with a first order 
Butterworth filter. The Pearson's correlation coefficient (r-
value) was calculated between the reconstructed EMG and 
the observed EMG in the trial in order to quantify how well 
the two trajectories matched each other. This process was 
repeated so that each and every trial was used to validate the 
model that was trained with the other trials. 

The LOO cross validation was repeated with various 
combinations of EEG sensors as it was generally found that 
the inclusion of all EEG sensors did not yield the maximum 
accuracy of the decoder due to overfitting of data. Since the 
time needed to test all possible combinations of sensors 
would have been unwieldy, a genetic algorithm was used to 
find the optimal set of EEG sensors that maximized 
performance, where new combinations of EEG sensors were 
derived from previous EEG sensor combinations that 
performed well. 

To investigate how the neural decoder was influenced by 
the presence of force feedback, the LOO cross validation was 
performed within each of the four conditions mentioned 
above. LOO cross validation was also performed with trials 
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across all conditions to determine if a neural decoder can be 
trained such that it can reconstruct the EMG across various 
conditions. Lastly, the neural decoder was also trained with 
all trials from one condition and tested with all trials in each 
of the four conditions to assess the neural decoder's 
generalizability between conditions. 

III. RESULTS 

The neural decoder performed similarly across all four 
conditions as shown in Fig. 2. The distributions of the 
accuracies were negatively skewed, indicating that the 
performance of our decoder usually had more instances of 
good decoding performance and rare instances of poor 

Figure 2.  Boxplots of decoding accuracies across all five subjects. Outliers are shown as plus symbols. Labels "IP" and "C" correspond to conditions 

when the exoskeleton was respectively placed ipsilateral and contralateral to the arm which controlled the robotic gripper. "FB" and "noFB" correspond to 

conditions when the exoskeleton respectively provided force feedback or did not provide feedback. Red boxplots correspond to accuracies where the neural 
decoder was trained and tested with data from only one condition.  Blue boxplots correspond to accuracies where the neural decoder was trained and tested 

with data simulataneously from all conditions.  Median values for each boxplot are as follows: 0.60, 0.51, 0.62, 0.58, 0.54, 0.47, 0.60, 0.53, 0.59, 0.53. 

 

Figure 3.  Best examples from subject 1 of reconstructed (dotted red line) 

and observed (solid black line) of the EMG linear envelopes used to control 

the robotic gripper. The correlation coefficient between the observed and 

predicted linear envelopes are shown in the upper right of each plot.  Labels 
correspond to the same conditions indicated by Fig. 2. 

Figure 4.  Plot of median correlation coefficients of the decoder when 

trained with one condition and tested on others. Columns indicate 

conditions used to train the decoder while rows indicate conditions used to 

test the decoder. Values on the main diagonal correspond to medians from 
the LOO cross validation within each condition. Labels correspond to the 

same conditions indicated by Fig. 2. 
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decoding. It was speculated that the trials with poor 
reconstructions occurred due to EEG artifacts (such as eye 
blinks). When the neural decoder was trained and tested 
within each condition, the decoding accuracies yielded a 
median correlation coefficients of r = 0.59 and a maximum of 
r = 0.91. When the neural decoder was trained with data from 
all conditions, the decoder appeared to perform slightly 
worse in each condition, yielding a median correlation 
coefficient of r = 0.53 and a maximum r = 0.94.  

In the best examples of the reconstructions, the predicted 
EMG linear envelopes generally follows the same trajectory 
as the observed EMG envelopes as shown in Fig. 3. We note 
how the observed EMG envelopes usually contained single 
muscle contractions that persisted for several seconds. 

When the neural decoder was trained with data within one 
condition and tested with trials from other conditions, the  
neural decoder performed the best when tested with trials 
from the same condition and considerably worse on the 
others as shown in Fig. 4. 

IV. DISCUSSION 

Our performance with the decoding of EMG was 
comparable to that of previous studies that have reconstructed 
EMG linear envelopes from invasive neural recording 
techniques. Table 1 reviews the decoding accuracies of 
previous literature where EMG was reconstructed from 
neural activity recordings. The results from this study support 
the feasibility of developing BMI systems with noninvasive 
scalp EEG. Our results indicate that within each task 
condition, the neural decoder was able to reconstruct the 
EMG at similar accuracies. However, training the neural 
decoder with one task condition and testing it in other 
conditions yielded poorer accuracies, indicating that training 
with one condition does not make the neural decoder 
generalizable across different conditions. It suggests that the 
task in each condition yields fairly unique neural signatures 
in terms of which arm was used to control the robotic gripper 
and on processing force feedback. However, we also found 
that training the neural decoder with data from all conditions 
yielded only a marginal reduction in decoding accuracies, 
which may suggest that similarities in the neural signature 
exist across all conditions that can be employed for 
predicting EMG in various conditions. 

Despite the small differences in the decoder’s 
performance across the four conditions, it is very likely that 
each condition would have yielded unique EEG signatures. 
Further work will investigate how each condition creates 
differences in spatial areas that are correlated to EMG 
activity. Such analysis would investigate how often each 
EEG sensor was chosen in the genetic algorithm and 
calculate on a trial by trial basis how correlated each sensor 
was to the EMG. 

Another aspect of the study that remains to be investigated 
is how subjects learned to use the force feedback to identify 
objects. It is expected that this learning effect would change 
the neural activity related to the EMG. This could introduce 
inconsistencies in the relationship between scalp EEG and 
EMG throughout the training data, which could influence the 
neural decoder’s performance in reconstructing EMG. 

TABLE I.  REVIEW OF EMG RECONSTRUCTION STUDIES 

Behavioral Task 
Decoding 

accuracy 
Notes Ref. 

Reach to grasp, 
isometric wrist 

movements 

VAF = 0.67 
M1 spike and Local 
Field Potentials, 5 Hz 

EMG LE*,  monkeys 

[1] 

Reach to grasp r = 0.69 

M1 neuron spikes, 40 
ms average windowed 

rectified EMG, 

monkeys 

[2] 

Center out reach R2 = 0.65 

M1/PMd neuron spikes, 
25 ms Gaussian filtered 

rectified EMG, 

monkeys 

[3] 

Stand and squat R2 = 0.74 
M1 Spike recordings, 4 

Hz EMG LE*, monkeys 
[4] 

Isometric wrist 
movements 

R2 = 0.47 

fMRI BOLD response,  

integrated EMG 
convolved with HRF, 

humans 

[5] 

Isometric wrist 

flexion/extension 

R2 = 0.71 

(source 
current) 

R2 = 0.55 

(electrode 
recordings) 

Scalp EEG, localized 

source currents, 2.2 Hz  
EMG LE*, humans 

[6] 

Prosthesis control 
with biceps 

contraction 

r = 0.59 
Scalp EEG, 0.167 Hz 

EMG LE*, humans 

Current 

Study 

* Pertains to the low pass filter cut off for linear envelopes (LE) 
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