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Abstract—Robot-assisted minimally invasive surgery (RAMIS)
is gaining widespread adoption in many surgical specialties,
despite the lack of a standardized training curriculum. Current
training approaches rely heavily on virtual reality simulators, in
particular for basic psychomotor and visuomotor skill develop-
ment. It is not clear, however, whether training in virtual reality
is equivalent to inanimate model training. In this manuscript,
we seek to compare virtual reality training to inanimate model
training, with regard to skill learning and skill transfer. Using
a custom-developed needle-driving training task with inanimate
and virtual analogs, we investigated the extent to which N=18
participants improved their skill on a given platform post-
training, and transferred that skill to the opposite platform.
Results indicate that the two approaches are not equivalent, with
more salient skill transfer after inanimate training than virtual
training. These findings support the claim that training with real
physical models is the gold standard, and suggest more inanimate
model training be incorporated into training curricula for early
psychomotor skill development.

Index Terms—Automated, inanimate, minimally invasive,
objective, robot-assisted, sensors, simulation, skill transfer,
surgery, training, virtual reality.

I. INTRODUCTION

OBOT-ASSISTED minimally invasive surgery (RAMIS)
Ris quickly becoming the standard of care for a number
of routine and non-routine surgical procedures in various sur-
gical specialties [1]-[4]. Despite its prevalence in both large
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Fig. 1.  Inanimate END task: experimental setup is shown with all its
components under the dVRK PSMs and the robotic endoscope.

academic hospital centers and smaller regional hospitals, there
exists no standardized training curriculum for novice surgical
trainees [5]. Given the increasing constraints on resident work
hours and increasing legal pressure on patient safety, a greater
portion of training is moving away from the operating theater
in the form of simulation-based training [6], [7]. Thus, indi-
vidual institutions are left to create their own RAMIS training
curricula.

Current approaches to RAMIS training utilize a combina-
tion of live clinical robot training with inanimate, animal, and
cadaver models, and virtual reality (VR) training [8]-[11].
Live robot training with inanimate training models has been
shown to correlate well with in-vivo training, and is for many
considered the gold standard [11]. At the same time, live robot
training can be resource intensive and present logistical prob-
lems, especially for hospitals that do not have a dedicated
robotic system for training purposes. In addition, live robot
training currently necessitates the use of structured human
grading for skill assessment, which can be subjective and time-
consuming. While their is considerable potential of one day
automating skill assessment for live robot training using both
the kinematics of the robot [12]-[14] as well as the robot’s
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physical interactions with the surgical environment [15], [16],
these advances are still far from clinical readiness.

VR training, on the other hand, allows for repeatable prac-
tice of skill-building exercises with easily-measured objective
skill metrics, and has also been shown to correlate well with
inanimate and in-vivo training [11]. VR training has seen
rapid growth in recent years, due in large part to advances
in computational power, leading to the development of train-
ing platforms like the dV-Trainer by Mimic Technologies [17],
the RobotiX Mentor by 3D Systems [18], and the da Vinci
SimNow skill simulator by Intuitive Surgical [19]. Still, VR
training can at best provide a virtual approximation of a
real training environment, which may not match exactly the
behavior of the real physical environment.

For either training approach predictive validity is required
for clinical adoption, and preliminary evidence suggest that
skill obtained in VR and inanimate training do transfer to
OR performance [11], [20]-[22]. It should be noted, however,
that these assessments generally rely on potentially subjective
skill measures such as structured human grading. What is still
unclear, however, is whether skill obtained during VR training
is equivalent to skill obtained during live inanimate training,
and how readily skill obtained through one training approach
transfers to the other approach given the manner in which they
are interchanged in most clinical training settings.

Several prior studies have attempted to compare inanimate
and VR training [23]-[30]. Unfortunately, the experimental
methods utilized introduced confounding factors that limit
generalization of the experimental findings. Perrenot et al.
for example trained participants on a set of VR tasks and
then evaluated them on a similar inanimate platform [27].
While VR performance was automatically computed using
the simulation software, inanimate training performance relied
heavily on structured human grading, which produced subjec-
tive performance assessments that were not procedure specific.
Likewise, Newcomb et al. compared the Robotic Training
Network’s inanimate exercises with the VR tasks available
on the da Vinci Skills Simulator [28]. Since each train-
ing group performed the exercises only on the assigned
platform, no direct comparison between the VR training proto-
col and the inanimate tasks was possible. In a similar fashion,
Brown et al., in an effort to avoid reliance on different scoring
systems used the VR simulator as baseline and final evaluation
for the two participant groups (VR and inanimate) [29]. The
comparison, however, was limited by the varying difficulty
of the training tasks, and the fact that the designed protocol
favored the VR group on the final testing phase.

It is also worth mentioning that Satava and colleagues
developed an evenly structured validation protocol and a
multi-functional training platform as part of the Fundamentals
of Robotic Surgery validation trial [30]. Two identical VR
and inanimate versions of the training task platform were
developed, and results indicate that participants significantly
improved their performance on both platforms. Still, both the
inanimate platform and the avian model used for baseline
and post-training evaluation lacked any form of sensoriza-
tion, forcing all assessments to be performed using structured
human grading. The moderate inter-rater reliability scores

observed therefore limits a thorough comparison of the two
platforms [5].

Recently, the work of Wang et al. has come the clos-
est in terms of objectively comparing VR and inani-
mate training through a human-centered experimental design
approach [31]. In their study, participants performed the nearly
identical VR and inanimate training task while kinesthetic
and physiological measurements were taken. Their results
suggest that training in VR environments may be over-
simplified (participants exerted less effort), allowing trainees
to adopt skill behaviors that hinder performance on the live
robot.

To build on these findings and conduct a comprehensive
comparison of inanimate and VR approaches to RAMIS train-
ing, several requirements must be satisfied. First, the platforms
used in either approach must be inanimate and virtual analogs
of the same training task, identical in both form and func-
tion. Second, both platforms should produce the same metrics
for task performance assessment. Given the simplicity with
which metrics are generated in virtual simulation, considerable
effort needs to be placed on instrumentation of the inanimate
platform to produce task performance measures that are both
goal-relevant and compatible with the metrics recorded on the
VR platform. Finally, regarding the study design, it is essential
to assess to what degree participants’ skill improves in each
approach, as well as the extent to which that skill transfers to
the opposite approach.

In this manuscript, we present an experimental platform and
user study designed to thoroughly compare inanimate and VR
approaches to RAMIS training. In what follows, we discuss
the design of the Inanimate and VR training task platforms,
followed by an overview of the user study. Results of the
user study will then be described in terms of performance
improvement post-training (skill learning) and performance
comparisons on the opposite platform (skill transfer). Finally,
we will discuss the results of our work in the broader context
of surgical training. We hypothesize that skill learning will
occur for both platforms, and that skill transfer will be more
clearly defined for the Inanimate training platform.

II. VIRTUAL AND PHYSICAL PLATFORMS
A. Task Concept

Our Enhanced Needle Driving (END) task was designed to
evaluate needle driving, a motor skill that is a common step
in many suturing procedures. The objective of the task is to
drive a 20mm radius suture needle through 3 rings following a
curved trajectory. The task is rendered in both real and virtual
environments as described in the following sections, and the
desired trajectory of the needle is defined by three rings posi-
tioned at 0, 45, and 90 degrees from the horizontal plane along
a 20mm radius circumference. These rings resemble the entry,
pass-through, and exit points of the ideal trajectory required
to close the incision in a thick tissue flap. To evaluate task
performance, we measured any deviations of the needle from
the ideal trajectory.
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Fig. 2. CAD Models of the Enhanced Needle Driving (END) platform: (a) whole platform consisting of interconnected modules; (b) optomechanical sensor;
the degrees of freedom are shown (green arrows) along with the center of rotation (green sphere) between the sensing plates (dark gray); (c) tilt-shift mechanism

to calibrate the lower sensing plate’s position and orientation.

B. Telerobotic Platform

All research activities reported in the manuscript were
performed using the da Vinci Research Kit (dVRK), an open-
source telerobotic system derived from the first generation da
Vinci Surgical System [32]. The dVRK features a unilateral
control architecture that enables teleoperation: the motion of
two master tool manipulators (MTMs) at the surgeon’s con-
sole is replicated by the patient-side manipulators (PSMs),
analogously to the clinical da Vinci surgical system. The
dVRK also features a robotic endoscope with two optical
channels whose images are displayed by a HD stereoscopic
viewer at the surgeon’s console. In addition, the dVRK sup-
ports haptic guidance, data logging, and virtual/mixed reality
applications [33]-[35].

C. Inanimate Task

The Inanimate END task (Fig. 1) is composed of a modular
3D printed structure containing three custom optomechanical
sensors to measure the 3-dimensional movement of the rings.
Visual feedback of the each ring’s rotational and translational
displacement is provided by a circular LED light strip centered
co-axially about the ring assembly. Task progression is mon-
itored using analog circuits generating binary contact signals
between the task components of interest. The full dVRK is
used for the Inanimate setup along with a Robot Operating
System (ROS) [36] interface for data acquisition and con-
trol. The task is made available both for left and right hand
dominant participants by mirroring the task setup. Complete
details of the Inanimate task are discussed in the following
sections.

1) Optomechanical Sensors: Each modular custom
optomechanical sensor was constructed from the optical
sensor of a SpaceNavigator mouse (3Dconnexion Inc.), which
is capable of measuring the relative rotations and translation
between the two sensing plates of the sensor with a resolution
of 170 increments per angular degree and 250 increments
per mm, respectively. The lower sensing plate features three
IR detectors that measure the intensity of light from three
separate IR emitters attached to the upper plate. Fig. 2

shows the CAD models of the END platform as developed:
a 3D-printed 45mm spring connects to upper plate to the
lower plate, thereby allowing the upper plate to freely move
(Fig. 2b). Each ring assembly is rigidly attached to the top
of the respective upper plate creating the entry, pass-through,
and exit points of the ideal needle trajectory (Fig. 2a).

Given the spring’s large diameter/height ratio (1.73:1) and
limited number of coils (2), and the length of the ring shaft
(65mm), the spring can be modeled as generating a center of
rotation (COR) for the ring assembly that can be approximated
as centered between the upper and lower sensing plates. This
COR translates with the upper assembly when the spring is
elongated (Fig. 2b). The resulting kinematics of the ring can
thus be approximated by two rotations (Ry, R)) around the
COR and one translation (#;) along the axis extending from
the COR to the ring center. This model was validated by mea-
suring the sensor outputs when forces were applied to the ring.
The resulting signals corresponding to the rotation around the
ring shaft (R;), and the lateral translations of the COR (Z, )
were observed to be at least one order of magnitude smaller
than the main displacements (Ry, Ry, t;). Therefore, Ry, t,
and #, can be considered negligible. While the real behavior
of the mechanical system may diverge from our model-based
assumptions when extreme displacements are applied to the
ring assembly, these situations can be considered negligible
given that they are outside the working (linear) range of the
sensor itself.

The lower plate is attached to a tilt-shift platform (Fig. 2c)
that allows for fine tuning of its position and orientation to can-
cel any orientation offset between the upper and lower plates
caused by the different angular configuration of each sensor.
Each optomechanical sensor is then enclosed in a 3D-printed
housing. The final task is composed of three interconnected
modular housings (Fig. 2a).

2) Visual Feedback: For each module, the displacement sig-
nals coming from the optomechanical sensor are mapped onto
a 16x5050 RGB LED circular strip (Worldsemi Co.) which is
located co-axially with respect to the shaft of the ring assem-
bly (see Fig. 1). When providing feedback to the trainee, it is
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Fig. 3. Conceptual Mapping of the LED Visual Feedback: in this example
the ring center is displaced to Pgjsp from equilibrium Peg by a positive and
negative rotation of ¢ and 6 and a positive translation of A. Therefore, the
azimuth turns on the central LED of the quadrant, the red color is chosen
because of the high elevation angle, and the translation turns on two additional
lateral LEDs.

important to give information about the error magnitude and
direction. This can be described using the following spherical
coordinate framework (Fig. 3): the signed ratio between the
rotation errors (¢, 6) defines the azimuthal angle (Az), the
greater absolute value between ¢ and 6 defines the elevation
angle (El), and the translation A defines the radius (R). The
azimuthal angle is mapped to a specific LED out of the 16
that describes the planar direction of the ring’s displacement.
The elevation angle is compared to two thresholds to determine
the color of the LED (off, orange, red), and it describes the
maximum angular error. The radius is mapped into the LEDs
adjacent to the LED controlled by the azimuthal angle, with A
compared to three thresholds that turn on additional LEDs (up
to three on each side). The resulting visual feedback intuitively
displays the rotational and translational errors with separate
cues.

A demonstration video of the visual feedback during the
task execution can be found in the supplemental material.

3) Contact Circuits: To track task initiation and progres-
sion in real-time, contact circuits were placed on the robotic
instruments, as well as on the task itself (Fig. 4).

Each daVinci Large Needle Driver [37] was modified by sol-
dering a conductive wire to one of the internal metallic tendon
cables creating a monopolar connection with the instrument tip
(Fig. 4a). Likewise, a custom 3D-printed needle holder com-
posed of dual-purpose magnets was used to hold the 1/2 round
GS-26 taper needles as well as connect them to one end of
a voltage divider circuit (Fig. 4b). These two circuits allowed
for automatic detection of the contact between instrument and
needle during pick-up and hand-to-hand transfer.

To track needle progression during the task, each ring
assembly was equipped with two thin conductive wires run-
ning along the inner and outer surface of the ring (Fig. 4c).
These two wires are connected in parallel to the original
SpaceNavigator mouse button circuits. Thus, contact by the

©

Fig. 4.
Needle Driver pulley; (b) magnet and wiring on the needle support; (c) ring
contacts on the inner and outer surface.

Inanimate setup contact circuits: (a) wire connection to the Large

instrument or needle will short-circuit the button and generate
a digital signal.

4) Signal Acquisition and Control: The ring displace-
ment and button contact signals are directly acquired by a
Linux-based Raspberry PI through the original SpaceNavigator
mouse USB-HID protocol. The analog signals from the volt-
age divider contact circuits are acquired by A/D chips on the
same board. The LED rings are controlled by means of PWM
signals generated using the real-time Direct Memory Access
and the Adafruit-Blinka Library [38].

The software of the Inanimate platform was developed as a
network of ROS nodes generated using the rospy Python [39]
client library. This ROS network can easily communicate
with other devices such as the dVRK or a Graphical User
Interface (See IV-3) through LAN. The whole Inanimate task
is therefore portable and it can run without the need of a
desktop PC.

D. Virtual Task

The Virtual END task was designed as a virtual ana-
log of the Inanimate END task, both in terms of form and
function. The virtual environment was generated using the
ATAR framework [40] and it was interfaced with the master
console of the dVRK. The simulated task was rendered by the
stereo-viewer and the virtual robotic instruments are controlled
by the dVRK master tool manipulators. Visco-elastic con-
straints were used to generate virtual multi-directional hinges
that reproduce the movements of the ring assemblies in the
physical task. For each simulated object, physical properties
were governed by software parameters while the graphical
renderings were generated using meshes based on the CAD
drawings of the physical task (Fig. 2). Complete details of the
Virtual task are discussed in the following sections.

1) Virtual Object Rendering: The CAD models used for
3D printing the Inanimate task platform were exported from
Solidworks to generate meshes in the 3D rendering soft-
ware Blender. After verifying the scaling and orientation, the
meshes were loaded in ATAR using a convex hull decompo-
sition approach [41]. The object meshes were automatically
decomposed and simplified (where necessary) based on the
requirements of reducing the computational load of the graph-
ics engine while also ensuring real-time interactivity and
realistic collision detection. The contact between objects was
defined using a collision detection function from the Bullet
library [42]; this provides pickup, transfer, and needle-ring
contact information. Custom meshes were created for the
following objects: GS-26 1/2 round taper needle, large nee-
dle drivers, task platform (ring assembly, LED-RGB-rings,
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Fig. 5.
reproduced between the two platforms.

modular support structures), and needle support stand. The
visual feedback replicates the spherical coordinate mapping of
the Inanimate platform LEDs, using simulated color-changing
lights.

2) Virtual Task Mechanics: Three 6DoF constraints control
the movement of the three virtual ring assemblies. Each con-
straint is modeled as a virtual spring-damper to resemble the
dynamics of the optomechanical assembly in the Inanimate
task as shown below. Each constraint is fixed on one side to a
still reference frame oriented analogous to the real ring assem-
bly in its resting position. The other side of the constraint
is attached to the virtual ring assembly and moves accord-
ingly. Two translations and one rotation are locked to recreate
the 3DoF (Ry, Ry, t;) kinematics of the real sensors in the
Inanimate task platform. In addition to controlling the virtual
ring assembly kinematics, the constraints act as a virtual sen-
sor that measures the displacement between the fixed reference
frame and the moving ring.

In order to equate the sensor output between the two plat-
forms, the three optomechanical sensors were calibrated using
an external optical measurement system (NDI Polaris). This
calibration was then used along with the 3D CAD model of the
virtual sensors to ensure parity between the two platforms. The
final setup for the Inanimate and Virtual Reality platforms are
shown in Fig. 5, in comparison, as seen from the stereoscopic
viewer inside the surgeon’s console.

E. Data Acquistion and Control

The experimental session was managed through a graphical
user interface based on QT widgets that control both the sim-
ulation and the real platform. The investigator could set the
acquisition variables, the handedness of the task, record data,
and home the robot MTMs and PSMs to restore a specific
teleoperation workspace. All the ATAR, dVRK, and Inanimate
platform variables were recorded at 60Hz.

F. Task Performance Measures

The displacements of the three rings in the task were
used to measure deviations from the ideal needle driving tra-
jectory. The sensors (virtual or real) underneath each ring
assembly produced three raw displacement signals (¢, 6, A)

Virtual (a) and Inanimate (b) tasks as seen from the stereo viewer of the surgeon’s console. Proportions, perspective, and background are accurately

that describe the rotational and translational displacement of
the ring assembly with respect to its equilibrium position.
To reconstruct the position of the ring in the 3-dimensional
space Pgjsp (see Fig. 3) the three signals were combined in a
kinematic chain as shown below

Piisp = Ry - Ry  tring ' ()
where,
[ 1 0 0
R;=1|0 cos(¢) —sin(p) 2
| 0 sin(¢) cos(¢)
[ cos(®) 0 sin(9)
R, = 0 1 0 3)
| —sin(@) 0 cos(9)
ting=[0 0 A]+[0 0 L] 4)

and L,y is the distance between the center of rotation (COR)
of the ring assembly and the ring center.

The displaced position Pgjs, was then compared to the equi-
librium position P4, and the Euclidean distance D between the
two centers was calculated as shown below.

D= norm(Peq — Pdisp) (5)
where
Py =1[0 0 Lying] (6)

The distance signal at each time sample n was calculated for
each ring i of the platform as D;(n). The value of D;(n) at each
sample n can be seen as the amount of stretch that the needle
would have caused on real tissue due to deviations from the
ideal trajectory. A comparison of the D;(n) signals for both
platforms before training can be seen in Fig. 6. The signals
show similar morphology and the same order of magnitude
for the VR and Inanimate platforms.

III. EXPERIMENT

Using the Inanimate and Virtual task platforms described
in Section II, we investigated both skill learning and skill
transfer between simulation and dry lab in the needle driving
task. All the experiments were conducted in the Laboratory
for Computational Sensing and Robotics (LCSR) at Johns
Hopkins University (Baltimore, USA).
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Fig. 6. Distance signals D for a single task execution as recorded from two
representative participants (one for each platform) before training. Signals are
of the same order of magnitude for the Virtual (a), and the Inanimate (b) tasks.

A. Participants

This study was approved by the Johns Hopkins School
of Medicine Institutional Review Board (study #00077792).
18 able-bodied participants were recruited for the study
(8 females and 10 males; mean age 26.7 £ 3.7 years). 17 par-
ticipants reported being right-hand dominant as assessed using
the Edinborough Handedness Survey, one participant reported
being left-hand dominant and did the task on the mirrored
setup. Among the participants, 5 had medical backgrounds,
however, all participants had no prior relevant experience with
the da Vinci Surgical System (no involvement in actual surgi-
cal cases, user studies, or training). In addition, no participant
had prior experience with robot teleoperation. All study activ-
ities took place in a single session lasting approximately 120
minutes and participants were compensated at a rate of $20
per hour.

The experiments presented here were part of a larger col-
laborative study investigating the effect of trans-cranial direct
current stimulation (tDCS) on skill learning and skill transfer.
This larger-scale study recruited 36 healthy participants and
randomly assigned them one of two groups, stimulation and
sham. Participants in both groups were connected to the tDCS
hardware, however, only participants in the stimulation group
received actual stimulation throughout the experiment. Here
we are presenting results from only the sham group. In this
way, we can focus our discussion on a thorough comparison
of the two training approaches without the confounding fac-
tor introduced by tDCS. Proper discussion of the comparison
between the stimulation and sham groups will be presented in
a separate publication.

B. Experimental Protocol

In order to compare the Inanimate and Virtual training
platforms, participants completed a single session experiment
comprised of four Phases with a specified number of task rep-
etitions for each stage: Baseline (BL - 15 repetitions), Training
(TR - 40 repetitions), and Evaluation (EV - 15 repetitions) on
one Platform, followed by Cross-evaluation (CR - 15 repe-
titions) on the other Platform. Participants were randomized
(predefined sequence) into two groups (A and B). Group A
performed the first three Phases (BL, TR, and EV) on the
Inanimate platform and the final Phase (CR) on the Virtual
platform. Group B performed the first three Phases (BL, TR,
and EV) on the Virtual platform and the final Phase (CR) on
the Inanimate platform (Fig. 7).

Fig. 7.

Description of the study protocol structure.

Participants also completed a brief survey regarding their
demographics, handedness, and relevant medical background
(used for tDCS eligibility). Participants then sat at the dVRK
console and were provided with an overview of the experimen-
tal setup and task procedure. Participants were informed that
the task objective was to drive the needle through the three
rings of the task platform without causing the rings to deviate
from their equilibrium positions. Participants were given an
explanation of the RGB LED rings so that they could visually
track the needle deviations.

In the Baseline, Evaluation, and Cross-evaluation Phases
of the experiment, participants were instructed to complete
the task in one of three requested amounts of time: Fast (5s),
Moderate (15s), or Slow (25s). The three requested times were
each presented a total of five times in a randomized fash-
ion for each Phase (BL, EV, and CR) and communicated to
the participant before each task execution. The correspond-
ing start signal and countdown auditory cue was triggered by
the participant by means of a dVRK foot pedal press. This
methodology allowed for sampling of participants’ skill level
with a wide and even distribution across the speed-accuracy
continuum [43]-[45]. In addition, these distributed time sam-
ples were used to derive the speed-accuracy function (SAF)
to investigate the effect of tDCS on motor learning [46]. As
previously mentioned, however, these investigations are not
the focus of this manuscript.

It should be noted that in the actual experiment, the experi-
menter monitored each participant’s actual task execution time
to detect any behavior that was non-compliant regarding the
requested times. Whenever the experimenter observed that the
participant exceeded a +5s interval from the requested time,
the requested time was reiterated on the next task repetition.
In most cases, non-compliant participants preferred to perform
the task at a speed close to the Moderate (15s) requested time.
As a result, the experimenter had to over-sample the Fast (5s)
and Slow (25s) requested times. In this way, systematically
guiding the participants by means of frequent changes in the
speed-accuracy tradeoff, together with a continuous supervi-
sion of the effective execution time, reduced the risk of outlier
behavior. The experimenter also repeated any trial where it was
observed that the participant dropped the needle.

C. Metrics and Statistical Analysis

The metric chosen for this study, M;,, is the sum of the
time-normalized integrals of the distance signals D;(n) for the
three rings. M;,; therefore represents the cumulative history of
the needle deviations across the three rings divided by the task
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execution time (Af), and is computed as:

3 D
= 3(Z220) .

i=1

where i represents the number of rings, and n the number of
samples.

M;,; was calculated for each task execution k. Dividing the
integral of the error by the actual time of execution normalizes
the performance metric with respect to time. While surgical
proficiency typically corresponds to low task error and fast
task completion time, the chosen metric here allows for an
analysis of each participant’s performance across the speed-
accuracy tradeoff that is invariant with respect to their actual
completion time.

All statistical analyses were performed in R version 3.5.3.
Given that our data set featured repeated measures and was
unbalanced (see below), a Generalized Linear Mixed Model
(GLMM) was chosen to model the between-subject and
within-subject effects of the three independent variables (train-
ing Platform, experiment Phase, and requested time) on the
dependent variable M;;,;. In addition to the three main effects,
subjects were treated as a random effect. Data fitting was
done using Maximum Likelihood Estimation (MLE). Post-hoc
tests were run using simultaneous t-tests with Satterthwaite’s
method. Bonferroni corrections were applied to account for
multiple comparisons in the data set. High p-values are
saturated to 1.0 due to the aforementioned correction. A pro-
gressive approach was taken to model development wherein
the simplest intercept-only model was constructed first, fol-
lowed by a separate model for each of the three independent
variables, and then models comparing the possible 2-way
interactions of the independent variables. Finally, a model
comparing the 3-way interaction of the three independent
variables was constructed. Model selection was based on the
Akaike Information Criterion (AIC) as a means of balancing
model fit with model complexity.

When analyzing our dataset, we discovered that grouping
the data with respect to requested times would have led to
unbalanced group sizes given that the experimenter had to
over-sample the Fast and Slow requested times for some non-
compliant participants (as mentioned in Section III-B). This
likely would have impacted the statistical power of our various
comparisons. In assessing the distribution of actual task exe-
cution times, we observed that our data set could be roughly
divided into three distinct groupings based on actual task exe-
cution time. We therefore created three new Speed groupings
that were defined by two thresholds set at the 33rd and 66th
percentile mark of our data set with respect to execution time.
The resulting data set is divided into three roughly equal time
groups (278+1 samples) and the new Speed groupings are
defined as Fast (<11.6s), Moderate (11.6-18.1s), and Slow
(>18.1s). Given that the resulting distribution of our dependent
variable M;,; was not normally distributed, a Logio transfor-
mation was applied to each data point to restore normality of
the model residuals (Shapiro-Wilk Normality Test W = 0.998,
p = 0.848). In our statistical models “Speed” has replaced
“requested time” as an independent variable.

TABLE I
LINEAR MIXED MODELS PERFORMANCE COMPARISON INVESTIGATING
THE EFFECTS OF INTERCEPT (Z), PLATFORM (P), PHASE (F),
SPEED (S), AND THEIR INTERACTIONS

Model Df AIC logLik p-value

Z 3 45094  -222.47

P 4 45291 -22245 0.85

F 5 363.15 -176.57  <2E-16%**
S 5 297.59 -143.8 <2E-16%#%*
PF+PS+FS 16 14728 -57.64 <2E-16%#*
P:F:S 20 146.68 -53.34 0.071

***p < 0.001 ; p-values are referring to comparison with

the respective previous row

TABLE II
INITIAL SKILL LEVEL AT BASELINE (BL) FOR THE VIRTUAL (VR)
AND INANIMATE (IN) TASK PLATFORMS

Comparison B SE p-value
Intercept -1.126  0.048  1.34E-54 ***
BL(VR-IN)Slow -0.140  0.064 0.091
BL(VR-IN)Moderate -0.114  0.063 0.214
BL(VR-IN)Fast 0.039  0.067 1

***p < 0.001. Estimates are based on the Logio data

IV. RESULTS

Table I shows the results of the various models described in
Section III-C. A comparison of the first four models demon-
strates that both Phase and Speed had a significant fixed effect
on the independent variable M;,; (p < 0.001). There was not a
significant main effect of Platform on M;,; (p = 0.85). A com-
parison of the two interaction models demonstrated that both
the 2-way and 3-way interactions had a significant effect on
the dependent variable M;;,;, and both models show very sim-
ilar performance. Given that the 3-way interaction model has
the lowest AIC and allows for consideration of all three fixed
effects simultaneously, this model was chosen for its ability to
allow post-hoc hypothesis testing at the lower clustering level
(Platform:Phase:Speed).

Fig. 8 shows the distribution of M;,; for each Platform,
Phase, and Speed while Tables II, III, & IV report the
model-based estimates for the various between-subject and
within-subject comparisons. For clarity, the values reported
in Fig. 8 are in non-transformed units. The values reported in
Tables II, III, & IV are in Logio units.

A. Initial Skill Level

We found no statistically significant differences between the
VR and Inanimate groups at Baseline for the three Speeds. The
results are reported in Table II.

B. Skill Learning and Transfer

1) Inanimate Training: For the Inanimate platform,
performance during Evaluation showed significantly lower
error (higher performance) than at Baseline for the Slow and
Moderate Speeds. Performance during Cross-evaluation on the
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Group B — Virtual Training

&3 Baseline (VR)
&8 Evaluation (VR)

Group A — Inanimate Training
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Fig. 8. M;,; distributions and statistical significance for groups A and B at

Fast (<11.6s), Moderate (11.6-18.1s), and Slow (>18.1s) Speeds. (*p < 0.05;
*p < 0.01; **p < 0.001; + Outliers).

TABLE III
GROUP A - INANIMATE TRAINING - RESULTS: BASELINE (BL),
EVALUATION (EV), AND CROSS (CR) ARE COMPARED AT
THE SLOW, MODERATE, AND FAST SPEEDS

Comparison B SE p—value
IN(EV-BL)Slow -0.357  0.053  1.68E-10 ***
IN(EV-BL)Moderate  -0.353  0.053  1.51E-10 ***
IN(EV-BL)Fast -0.093  0.053 0.55
IN(CR-BL)Slow 0228 0.057 6.30E-05 ***
IN(CR-BL)Moderate  -0.255  0.053  9.66E-06 ***
IN(CR-BL)Fast -0.061  0.054 1
IN(CR-EV)Slow 0.128  0.056 0.022 *
IN(CR-EV)Moderate  0.099  0.052  0.41
IN(CR-EV)Fast 0.321 0.053 1

*p < 0.05; **p < 0.01; ***p < 0.001. Estimates are
based on the Logio data

Virtual Reality platform was also better (lower error) than
Baseline performance on the Inanimate platform for the Slow
and Moderate Speeds. Performance during Cross-evaluation
(on the Virtual Reality platform) was not significantly differ-
ent than Evaluation for the Moderate Speed, and only slightly
worse (higher error) than Evaluation for the Slow Speed. All
comparisons at the Fast Speed were not significant. Complete
results are reported in Table III.

2) Virtual Training: For the Virtual Reality platform,
performance during Evaluation showed significantly lower
error than at Baseline for the Slow and Moderate Speeds.
Performance during Cross-evaluation on the Inanimate plat-
form was not statistically different than performance at
Baseline on the Virtual Reality platform for all three Speeds.
Performance during Cross-evaluation (on the Inanimate plat-
form) was significantly worse (higher error) than dur-
ing Evaluation on the Virtual Reality platform for the
Slow and Moderate Speeds. All comparisons at the Fast
Speed were not significant. Complete results are reported
in Table IV.

TABLE IV
GROUP B - VIRTUAL TRAINING - RESULTS: BASELINE (BL),
EVALUATION (EV), AND CROSS (CR) ARE COMPARED AT
THE SLOW, MODERATE, AND FAST SPEEDS

Comparison B SE p—value
VR(EV-BL)Slow -0.375 0.058  7.03E-10 ***
VR(EV-BL)Moderate  -0.303  0.056  7.14E-07 ***
VR(EV-BL)Fast -0.129  0.058 0.233
VR(CR-BL)Slow -0.019 0.050 1
VR(CR-BL)Moderate  0.015 0.051 1
VR(CR-BL)Fast -0.067 0.054 1
VR(CR-EV)Slow 0.357 0.052  4.67E-11 ***
VR(CR-EV)Moderate  0.319  0.054  3.15E-08 ***
VR(CR-EV)Fast 0.062  0.050 1

*p < 0.05; ***p < 0.001. Estimates are based on the
Logio data

V. DISCUSSION

In discussing our results we will focus on an overview of
our major findings, a comparison of these finding to prior
literature, and limitations of these findings.

A. Overview of Major Findings

Overall, our findings suggest that Inanimate and Virtual
Reality approaches to training may not be equivalent with
respect to basic psychomotor and visuomotor skill develop-
ment. In particular, while skill learning occurred for both
Platforms (Evaluation accuracy was significantly greater than
Baseline accuracy) for the Moderate and Slow Speeds, skill
transfer occurred differently between the two training plat-
forms. For the Inanimate platform, participants’ performance
in Cross-evaluation on the VR platform was significantly
greater than their Baseline performance on the Inanimate plat-
form and not significantly different from their Evaluation
performance at the Moderate Speed. The same trend holds
true for the Slow Speed, however, we did observe that
Cross-evaluation performance was significantly less, albeit
marginally less, than Evaluation performance. We feel that
this moderate level of significant difference (p=0.02) is likely
caused by the presence of outliers. For the VR platform,
participants’ Cross-evaluation performance on the Inanimate
platform was not significantly different than their Baseline
performance on the VR platform and significantly worse than
their Evaluation performance at both the Moderate and Slow
Speeds.

These trends, however, do not hold at the Fast Speed; par-
ticipants’ performance did not change significantly between
Baseline, Evaluation, or Cross-evaluation for either Platform.
When choosing the three different requested times, we tried
to pick three speeds that we felt would cover the widest
range of the speed/accuracy tradeoff. We felt that our choices
(5s, 15s, and 25s) were in line with other research investigating
the speed/accuracy tradeoff in motor control tasks [43]-[45].
That said, our findings revealed that attempts to perform the
task at the fastest speed likely represented the lower-bound of
the speed-accuracy tradeoff for participants. At this extreme,
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it is clear that participants prioritized speed over accuracy,
thereby diminishing the potential for learning to occur. It is
possible that with increased practice learning could have take
place. A definitive answer, however, is beyond the scope of
this manuscript. While a full analysis of the that tradeoff is
not the focus of this manuscript, its impact on our results is
nonetheless interesting.

B. Comparison to Existing Literature

While the findings presented here are only applicable to the
needle driving task used in the experiment, they provide to
the best of the authors’ knowledge, the first truly objective
comparison of inanimate and VR RAMIS training in terms of
skill learning and skill transfer. Several studies have utilized
functionally similar tasks to investigate skill learning for inan-
imate and VR training approaches [25], [27], [28] and have
found that both platforms led to post-training performance
improvements, with inanimate robot performance slightly out-
performing VR performance. Our findings align well with
these results in that we observed skill learning for both
Inanimate and VR platforms. In addition, numerous studies
have investigated the skill transfer process from virtual training
to real-world practice [47]-[50]. Results from these studies,
however, tend to be variable due to the difficulty of developing
Inanimate and VR tasks with equal levels of complexity and
methods for performance assessment. Our results also align
well with these findings, which in general, found no statistical
observations of skill transfer from VR to inanimate practice.
Our findings are further supported by the work of Brown et al.
who investigated skill transfer from inanimate practice to VR
performance and found that inanimate practice led to compa-
rable performance on a VR simulator [29]. Finally, the recent
work of Wang er al. is noteworthy as they used a human-
centred approach to investigate differences between VR and
inanimate training and found that the training on the live robot
was more difficult for participants than training in VR [31].
Given our presented findings, it is worth considering whether
this increase in difficulty leads to lack of skill transfer for our
VR group.

We chose the task of needle driving as it is a key step
in most suturing procedures, and adequately exemplifies the
psychomotor and visuomotor skills required of any surgeon.
Our Inanimate and Virtual platforms captured the essence of
needle driving in real tissue, in particular the objective of fol-
lowing an ideal trajectory from needle insertion to needle exit.
In addition, both platforms captured and displayed deviations
from this trajectory in an manner consonant with the way real
tissue might stretch under such deviations. From a functional
perspective, this task fits well with similar inanimate and vir-
tual task used in early psychomotor skill development such
as peg transfer. At the same time, the sensorized nature of
both platforms fits well with one of growing trends in surgical
training research, the use of metrics from instrumented train-
ing platforms to produce automated, objective assessments of
skill [15], [16], [51]-[53]. That both training platforms high-
lighted in this manuscript are capable of producing the same
metrics expands the potential for the development of robust,
standardized approaches to surgical training. Even though our

present findings suggest a disparity between inanimate and VR
approaches, the data from this study and others may prove use-
ful in creating skill-equivalence mappings that are capable of
equating performance between the two approaches.

C. Limitations

Although the results presented in this manuscript have posi-
tive implications for RAMIS training, there are few limitations
that need to be addressed in future investigations. First, despite
the clear relevance to clinical practice, the results discussed in
the manuscript have not been validated with a clinical par-
ticipant pool consisting of novice and expert surgeons. Thus,
the face and construct validity of either platform has yet to
be established. In addition, while our training platform was
designed to measure deviations from the ideal needle driv-
ing trajectory, these results lack the validity to predict how
performance in our task translates to real tissue. Second, the
use of open-sourced hardware and software such as the dVRK
and ATAR framework leave open the question of how these
results would transfer to commercial telesurgical platforms
such as the da Vinci Surgical System and the da Vinci Surgical
Simulator. Third, with respect to the study design, we were
not able to measure each participants’ Baseline performance
on both platforms. This information would have produced use-
ful insights for interpreting the skill transfer results. It is also
worth considering how these findings might change if par-
ticipants were given unconstrained time to perform the task.
Fourth, regarding the experimental setup, the optomechanical
sensors had a limited sensing range causing signal saturation
for extreme ring displacements. Likewise, the suturing task
and camera angle were only tested in one configuration. Thus
it is unclear whether the current results would be sustained
in different configurations or if participants could change the
orientation themselves. Finally, the ATAR simulation frame-
work, while functional, was not the most realistic simulation.
While other more realistic simulation platforms exist, they are
generally proprietary, which would limit the ability to design
custom training task as we have done here.

VI. CONCLUSION AND FUTURE WORK

In this study, we have investigated the equivalency of inani-
mate and virtual training for robot-assisted minimally invasive
surgery (RAMIS). To that end, we developed an enhanced
needle driving task (END) with analogous Inanimate and
Virtual Reality platforms that were each capable of gener-
ating the same objective, robust, and realtime measures of
task performance. Utilizing the da Vinci Research Kit (dVRK)
telerobotic platform, a user study was conducted to assess
participants’ performance improvement on a given platform
following training (skill learning), as well as the extent to
which that improvement was sustained on the opposite plat-
form (skill transfer). In this way, we were able to assess skill
development and skill transfer without the typical confounding
factors associated with different telerobotic platforms, differ-
ent training tasks, or different skill performance measures. Our
results indicate that the two approaches produce different train-
ing outcomes, with inanimate training resulting in more salient
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skill transfer than VR training. These findings suggest that
training with the real robot using inanimate models remains
the gold standard for fundamental psychomotor and visuo-
motor skill development in robot-assisted minimally invasive
surgery (RAMIS).

While the presented work provides empirical evidence of the
potential disparity that exists between inanimate and virtual
RAMIS training, it has also presented a unique experimen-
tal platform that can be used for future investigations. Initial
investigations should seek to verify the findings presented
here with clinically relevant participants and clinically relevant
hardware. This will likely require improving and modifying
the Inanimate training platform to work with clinical surgical
systems. Such improvements could make use of non-contact
optical measurement techniques for tracking task performance.
There are also a number of other follow-up experiments that
can be conducted to assess the robustness of these results. This
includes longitudinal study protocols that use multiple training
and post-training sessions to assess any asymptotic behavior of
either skill learning or skill transfer. In addition, future work
should consider the use of alternative feedback mechanisms
such as haptic feedback, and its role in skill development and
skill retention.
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